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A THEOREM IN ADDITIVE NUMBER THEORY
BY
ROGER CROCKER (LONDON)

It has been shown [1], [2], by different methods that there is an
infinity of positive odd integers not representable as the sum of a prime
and a (positive) power of 2, thus disproving a conjecture to the contrary
that had been made last century. It is easily shown [4] that for each
fixed (integral) k > 2, there is an infinity of positive integers not repre-
sentable as the sum of a prime and the k"™ power of a positive integer.
The purpose of this paper is to present

THEOREM 1. For each fixed (integral) k > 2, there is an infinity of
positive odd integers neither representable as the sum of a prime and a positive
power of 2, nor representable as the sum of a prime and the k" power of
a positive integer.

Notation. Throughout this paper, each p; represents an odd prime.
All quantities are integers and usually positive integers.

First, to reproduce the counterexample in [2] — slightly modified
a8 in [3], consider an “overlapping” congruence system (1) (i.e., given
any positive integer, it will satisfy — at least — one of equations of the
system; several such systems occur below):

(1) r; = a;(modn;), 1<i<h.

From this system, one constructs the following simultaneous congru-
ence system

2%(modp;), 1 <i<h, where 2" = 1(modp;);
c¢(modpy,,), where p;., =2°—1,p a prime (!), and

¢ # pi+2%(modpys,,) for 0 <d<p—1, 1 <i<h;
1(mod2)

with all moduli p;, 1 <7< h+1, distinet. As shown in [2] and [3],
none of these odd integers is the sum of a prime and a power of 2, 8o that
the counterexample is complete.

(2) =

ll

(!) Any prime may be chosen for p 8o long a8 pp, ;is distinct from the other pi’s.
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Now choose a fixed %k > 2. Taking (2), suppose 2 to be a k' power
residue of each p;, 1 < i < h. This is a sufficient (though not a necessary)
condition that 2% be a k*® power residue of the corresponding p;. Thus,
for each %, there exists an s; such that s¥ = 2%(mod p;); s; may then be
replaced by any integer r; = s;(mod p;). Also, suppose ¢ to be a k™ power
residue of p,,, so that there exists an s;,, such that sk +1=c¢(mod ppyy);
then s,,, may be replaced by 74, = Sy, (mod ps,,). Hence, every
solution of the simultaneous congruence system w = s;(mod p;), 1 <+
<h+1, w=1(mod 2), will have the property that w* = 2%(mod p;)
for all 1 <i<h and that w* = c¢(mod ps,,); also that w* = 1(mod 2).
The solutions to this system form an arithmetic progression; if w’ is one
solution, the others may be written as

h+1

w = w"".?” i,
1=1

j any positive integer. Now consider w*; none of these (odd) integers is
the sum of a prime and a power of 2 (since they all satisfy (2)). It is triv-
ially shown (almost exactly as in [4]) that for an infinity of j, w”* is
not the sum of a prime and a k™ power, for the chosen k.

Thus, to establish the validity of Theorem I for any particular %,
an “overlapping® congruence system (1) must be found such that 2 is
a k*™-power residue of p;, 1 <1i < h; also ¢ must be a k*-power residue
of pn., (as well as satisfying the condition imposed upon it in (2)).

It is immediately seen that if Theorem I is valid for all prime values
of k, it is valid for all k; hence in the following, ¥ may be considered prime
(inclusive of 2).

, First consider any particular (prime) 2 > 5. Take 0(mod 2), 0(mod 3),
1(mod 4), 3(mod 8), 7(mod 12), 23(mod 24) for the choice of (1). Then
one constructs for (the simultaneous congruence system) (2)

t =1(mod 3), t = 1(mod 7), ¢ = 2(mod 5), ¢ = 2*(mod 17),
¢t = 2"(mod 13), t = 2**(mod 241), ¢ = 16(mod 31), ¢t = 1(mod 2).

Now for p; =3,5,7,13,17 and k > 5, one has (k,p;—1) =1 so
that 2 is a k*™-power residue of these p;’s (by the well-known generalization
of Euler’s criterion). For p; =241 or 31 and % > 5, one again has
(k, pi—1) = 1 so that 2 is a k*™-power residue of 241 and 16 is a k™ -power
residue of 31. For k = 5, since 241|2**—1, 2 is a k*®-power residue of 241.
Similarly, for k¥ = 5, 16 is a k™-power residue of 31 (it also satisfies the
condition for ¢ in (2)).

Now consider ¥ = 3. Take 0(mod 2), 1(mod 4), 3(mod 8), 0(mod 5),
3(mod 10), 7(mod 20), 37(mod 40) for the choice of (1). Then one con-
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structs for (2)
t =1(mod 3), ¢t = 2(mod 5), ¢ = 23(mod 17), ¢t = 1(mod 31),
t = 23(mod 11),
t = 2"(mod 41), ¢ = 2°"(mod 61681), ¢t = 64(mod 127), ¢ = 1(mod 2).

Now for p; =3,5,11,17,41, it is true that (3,p;—1) =1 so
that 2 is a cubic residue of p; (2).

For p; = 31 or 61681, 2®i~Y? = 1(mod p;) so that 2 is a cubic
residue of these p;. Finally, it is immediate that 64 is a cubic residue
of 127 (it also satisfies the condition for c).

Finally, consider ¥ = 2, certainly the most interesting and also
the hardest special case. Take

0(mod 2), 0(mod 3), 0(mod 5), 3(mod 8), 1(mod 15), 7(mod 16),
13 (mod 20), 17(mod 24), 25(mod 32), 37(mod 40), 47 (mod 48),
31(mod 48), 49(mod 60), 17(mod 80), 29(mod 96), 29(mod 120),
137(mod 160), 101 (mod 240), 461 (mod 480)

for the choice of (1). Then one considers (2) found from (1), with ps,,
= 2131 go that ¢t = ¢(mod 213—1). Now it can easily be verified nume-
rically that 2 is a quadratic residue of (distinct) (3) p;’s corresponding
to those n; < 60. Corresponding to those n; > 60, it is also easily shown
that there is a (different) p; in each case having 2 as a quadratic residue.
For consider 2”'2m—1, g any odd positive integer and m > 3. Now there
exists a prime, say ., such that 2 belongs to ¢g-2" mod p,, (from a well-
known theorem). Hence p,, = 1(mod g-2™) so that p, = 1(mod 8).
Thus, 2 is a quadratic residue of p,,. Since the above n; > 60 are of the
form ¢-2™ where m > 3, one obtains the desired result. Finally, there
exists a positive integer ¢ which is a quadratic residue of 213¥-1
and. which also satisfies the condition for ¢ in (2), where p = 13. For
there are 2!2—1 distinet quadratic residues of 2!%—1. There are 13
distinet residues of 2%(mod 2!*—1); there are also at most % distinct
residues of p;(mod 2'*—1), h = 19. Hence there are at most 13 (19)

(3) Here in particular, when p; = 3, 17, or 31, for 2% to be a cubic residue of
the corresponding p;, it is sufficient but not necessary that 2 be a cubic residue of p;.
However, for the uniformity of argument, this fact is not used.

(®) In principle at least; because of the large pi's occurring, the arguments
below are mainly those of proving existence. However, for n; < 60, p: = 3, 7, 31,
17, 151, 257, 41, 241, 65537, 61681, 97, 673, 1321.
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distinct residues of p;-+2% (mod 2!*—1) from which, since 13 (19) < 212—1,
the desired result (the existence of ¢) follows (in fact, there are at
least 212—1—13 (19) or 3848 possibly distinet choices for ¢), q.e.d.

Obviously, Theorem I holds for “the %™ power of a negative integer”
as well, since [4] does.
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