A THEOREM IN ADDITIVE NUMBER THEORY

BY

ROGER CROCKER (LONDON)

It has been shown [1], [2], by different methods that there is an infinity of positive odd integers not representable as the sum of a prime and a (positive) power of 2, thus disproving a conjecture to the contrary that had been made last century. It is easily shown [4] that for each fixed (integral) \(k \geq 2\), there is an infinity of positive integers not representable as the sum of a prime and the \(k^{th}\) power of a positive integer. The purpose of this paper is to present

THEOREM I. For each fixed (integral) \(k \geq 2\), there is an infinity of positive odd integers neither representable as the sum of a prime and a positive power of 2, nor representable as the sum of a prime and the \(k^{th}\) power of a positive integer.

Notation. Throughout this paper, each \(p_i\) represents an odd prime. All quantities are integers and usually positive integers.

First, to reproduce the counterexample in [2] — slightly modified as in [3], consider an “overlapping” congruence system (1) (i.e., given any positive integer, it will satisfy — at least — one of equations of the system; several such systems occur below):

\[
\begin{align*}
1 & \leq i \leq h. \\
\end{align*}
\]

(1)

From this system, one constructs the following simultaneous congruence system

\[
\tau = \begin{cases}
2^a_i \pmod{p_i}, & 1 \leq i \leq h, \text{ where } 2^a_i \equiv 1 \pmod{p_i}; \\
\alpha_i \pmod{p_{h+1}}, & \text{where } p_{h+1} = 2^p - 1, \text{ } p \text{ a prime } (') \text{, and} \\
c \neq p_i + 2^d \pmod{p_{h+1}} & 0 \leq d \leq p - 1, 1 \leq i \leq h; \\
1 \pmod{2} &
\end{cases}
\]

(2)

with all moduli \(p_i\), \(1 \leq i \leq h+1\), distinct. As shown in [2] and [3], none of these odd integers is the sum of a prime and a power of 2, so that the counterexample is complete.

\(^{(1)}\) Any prime may be chosen for \(p\) so long as \(p_{h+1}\) is distinct from the other \(p_i's.\)
Now choose a fixed $k \geq 2$. Taking (2), suppose 2 to be a k^{th} power residue of each p_i, $1 \leq i \leq h$. This is a sufficient (though not a necessary) condition that 2^{a_i} be a k^{th} power residue of the corresponding p_i. Thus, for each i, there exists an s_i such that $s_i^k \equiv 2^{a_i} (\text{mod } p_i)$; s_i may then be replaced by any integer $r_i \equiv s_i (\text{mod } p_i)$. Also, suppose c to be a k^{th} power residue of p_{h+1} so that there exists an s_{h+1} such that $s_{h+1}^k \equiv c (\text{mod } p_{h+1})$; then s_{h+1} may be replaced by $r_{h+1} \equiv s_{h+1} (\text{mod } p_{h+1})$. Hence, every solution of the simultaneous congruence system $w \equiv s_i (\text{mod } p_i)$, $1 \leq i \leq h+1$, $w \equiv 1 (\text{mod } 2)$, will have the property that $w^k \equiv 2^{a_i} (\text{mod } p_i)$ for all $1 \leq i \leq h$ and that $w^k \equiv c (\text{mod } p_{h+1})$; also that $w^k \equiv 1 (\text{mod } 2)$. The solutions to this system form an arithmetic progression; if w' is one solution, the others may be written as

$$w = w' + j \prod_{i=1}^{h+1} p_i,$$

j any positive integer. Now consider w^k; none of these (odd) integers is the sum of a prime and a power of 2 (since they all satisfy (2)). It is trivially shown (almost exactly as in [4]) that for an infinity of j, w^k is not the sum of a prime and a k^{th} power, for the chosen k.

Thus, to establish the validity of Theorem I for any particular k, an “overlapping” congruence system (1) must be found such that 2 is a k^{th}-power residue of p_i, $1 \leq i \leq h$; also c must be a k^{th}-power residue of p_{h+1} (as well as satisfying the condition imposed upon it in (2)).

It is immediately seen that if Theorem I is valid for all prime values of k, it is valid for all k; hence in the following, k may be considered prime (inclusive of 2).

First consider any particular (prime) $k \geq 5$. Take $0 (\text{mod } 2)$, $0 (\text{mod } 3)$, $1 (\text{mod } 4)$, $3 (\text{mod } 8)$, $7 (\text{mod } 12)$, $23 (\text{mod } 24)$ for the choice of (1). Then one constructs for (the simultaneous congruence system) (2)

$$t \equiv 1 (\text{mod } 3), \ t \equiv 1 (\text{mod } 7), \ t \equiv 2 (\text{mod } 5), \ t \equiv 2^3 (\text{mod } 17),$$

$$t \equiv 2^7 (\text{mod } 13), \ t \equiv 2^{23} (\text{mod } 241), \ t \equiv 16 (\text{mod } 31), \ t \equiv 1 (\text{mod } 2).$$

Now for $p_i = 3, 5, 7, 13, 17$ and $k \geq 5$, one has $(k, p_i-1) = 1$ so that 2 is a k^{th}-power residue of these p_i's (by the well-known generalization of Euler's criterion). For $p_i = 241$ or 31 and $k > 5$, one again has $(k, p_i-1) = 1$ so that 2 is a k^{th}-power residue of 241 and 16 is a k^{th}-power residue of 31. For $k = 5$, since $241 | 2^{48} - 1$, 2 is a k^{th}-power residue of 241. Similarly, for $k = 5$, 16 is a k^{th}-power residue of 31 (it also satisfies the condition for c in (2)).

Now consider $k = 3$. Take $0 (\text{mod } 2)$, $1 (\text{mod } 4)$, $3 (\text{mod } 8)$, $0 (\text{mod } 5)$, $3 (\text{mod } 10)$, $7 (\text{mod } 20)$, $37 (\text{mod } 40)$ for the choice of (1). Then one con-
structures for (2)

\[t \equiv 1 \pmod{3}, \ t \equiv 2 \pmod{5}, \ t \equiv 2^2 \pmod{17}, \ t \equiv 1 \pmod{31}, \]
\[t \equiv 2^3 \pmod{11}, \]
\[t \equiv 2^7 \pmod{41}, \ t \equiv 2^{37} \pmod{61681}, \ t \equiv 64 \pmod{127}, \ t \equiv 1 \pmod{2}. \]

Now for \(p_i = 3, 5, 11, 17, 41, \) it is true that \((3, p_i - 1) = 1 \) so that 2 is a cubic residue of \(p_i \).

For \(p_i = 31 \) or \(61681, \) \(2^{(p_i - 1)/3} \equiv 1 \pmod{p_i} \) so that 2 is a cubic residue of these \(p_i \). Finally, it is immediate that 64 is a cubic residue of \(127 \) (it also satisfies the condition for \(c \)).

Finally, consider \(k = 2 \), certainly the most interesting and also the hardest special case. Take

\[0 \pmod{2}, \ 0 \pmod{3}, \ 0 \pmod{5}, \ 3 \pmod{8}, \ 1 \pmod{15}, \ 7 \pmod{16}, \]
\[13 \pmod{20}, \ 17 \pmod{24}, \ 25 \pmod{32}, \ 37 \pmod{40}, \ 47 \pmod{48}, \]
\[31 \pmod{48}, \ 49 \pmod{60}, \ 17 \pmod{80}, \ 29 \pmod{96}, \ 29 \pmod{120}, \]
\[137 \pmod{160}, \ 101 \pmod{240}, \ 461 \pmod{480} \]

for the choice of (1). Then one considers (2) found from (1), with \(p_{n+1} = 2^{13} - 1 \) so that \(t \equiv c \pmod{2^{13} - 1} \). Now it can easily be verified numerically that 2 is a quadratic residue of (distinct) \(^{(2)} \) \(p_i \)'s corresponding to those \(n_i \leq 60 \). Corresponding to those \(n_i > 60 \), it is also easily shown that there is a (different) \(p_i \) in each case having 2 as a quadratic residue. For consider \(2^{2^m} - 1, \) \(g \) any odd positive integer and \(m \geq 3 \). Now there exists a prime, say \(p_m \), such that 2 belongs to \(g \cdot 2^m \pmod{p_m} \) (from a well-known theorem). Hence \(p_m \equiv 1 \pmod{g \cdot 2^m} \) so that \(p_m \equiv 1 \pmod{8} \). Thus, 2 is a quadratic residue of \(p_m \). Since the above \(n_i > 60 \) are of the form \(g \cdot 2^m \) where \(m \geq 3 \), one obtains the desired result. Finally, there exists a positive integer \(c \) which is a quadratic residue of \(2^{13} - 1 \) and which also satisfies the condition for \(c \) in (2), where \(p = 13 \). For there are \(2^{13} - 1 \) distinct quadratic residues of \(2^{13} - 1 \). There are 13 distinct residues of \(2^4 \pmod{2^{13} - 1} \); there are also at most \(h \) distinct residues of \(p_i \pmod{2^{13} - 1}, \ h = 19 \). Hence there are at most 13 (19)

\(^{(2)} \) Here in particular, when \(p_i = 3, 17, \) or \(31, \) for \(2^4 \) to be a cubic residue of the corresponding \(p_i, \) it is sufficient but not necessary that 2 be a cubic residue of \(p_i. \) However, for the uniformity of argument, this fact is not used.

\(^{(3)} \) In principle at least; because of the large \(p_i \)'s occurring, the arguments below are mainly those of proving existence. However, for \(n_i < 60, \) \(p_i = 3, 7, 31, \)
\[17, 151, 257, 41, 241, 65537, 61681, 97, 673, 1321. \]
distinct residues of $p_i + 2^d \pmod{2^{13} - 1}$ from which, since $13(19) < 2^{12} - 1$, the desired result (the existence of c) follows (in fact, there are at least $2^{12} - 1 - 13(19)$ or 3848 possibly distinct choices for c), q.e.d.

Obviously, Theorem I holds for "the kth power of a negative integer" as well, since [4] does.

REFERENCES

QUEEN ELIZABETH COLLEGE
UNIVERSITY OF LONDON

Reçu par la Rédaction le 23.1.1968