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Abstract, The paper deals with the convergence and error estimates for the
Runge-Kutta method of the fourth order. The method of proofs does not change
essentially for the Runge—Kutta method of the third and second order.

1. This paper contains a theorem on the convergence and error
estimates for the Runge-Kutta method of the fourth order, cf. Theorem 3.

The proofs are based on the method of difference inequalities, cf.
Remark 2, Section 6.

2. We shall assume that the right-hand member of the equation

(2.1) ¥y =f(z,9),

satisfies the classical conditions of the existence and uniqueness theorem:

(i) f(»,y) is a continuous function of its arguments and satisfies
the Lipschitz condition in the set @:

(2.2) Q: le—EI<E, ly—ul<k,
(2.3) if(@, ) —fl@, | < ZLly 9,

for (v,y)eQ, (z,9) €@, 0 < ¥ = const.
We assume that

(2.4) If(z, )l <M for (w,y) e@, 0 < M = const.
Let us denote by ¢, P, T the sets

2 e — &l < by, Iy —nl < by,
(2.5) =&l <hy, ly—ul<k,
I T T £+h13 ¥ =7l < M'(w "wo)
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where (z,, ¥,) is an arbitrary point in ¢, and

k

(2.6) b= 55T

If the point (x,, ¥,) € ¢ 18 given, then there exists a unique integral
curve ¥y = @(@), Yo = ¢(®,), in the interval |v —&| < h,.

For an application of the Runge-Kutta methed the class (° of the
functions ¢ and f will be required. This additional assumption will be
explicitly mentioned at appropriate places.

3. We shall use the classical notation for the Runge-Kutta method:

kim = hf(@y, Pn)y
k(zn) = h-f(z,+ah,y @, + P 'k(ln))’

(3.1) 2 "
kg“) = h-f(iv,,'l‘ash: Pn T 2533.]0‘(’ ))’

g=1

kgn) = h'f(mn'l'ath’ q’n""j ﬁ4s'k§n))1

8=1

where 2z, denote the nodal points and the numbers a;, f;, (¢ = 2, 3, 4;
8 =1,2,3; i>s) are independent on the choice of the function f(x, y).
Let us also denote by w; (j = 1,2, 3, 4) numbers independent on
the choice of the function f(x, ¥).
Let us assume for a moment that the quantities (3.1) are defined,
o () and f(z, y) are of class C° and let us introduce the following condition
W and condition U:

ConpITION W. We have the relations

4

(3.2) P41~ Pn = 2 alhl'l"sl(wny r),
im0
4 4

(3.3) D ok = 3l + ey (@, ),
i=1 =0

that is, the first five terms on the right-hand sides of (3.2) and (3.3) coincide,
and

(3.4) & (@ h) = O(R°),  &(an, b) = O(F),

holds for every function f(x, y) of class C° in the set Q.
CoxprrioN U. The numbers ;, a;, 8, (§=1,2,3,45 ¢ =1,2,3;
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i>8) (8 =1,2,3) satisfy the system
a; = P, az = fa1+ Bazy ag = Pa+ BaatBusy
o1t wtwyt+o, =1, Wy s+ wa05+ wyaq = 3,

2 2 2 _ 1 3 3 3 __ 1
wya;+ wya3+wyay = 3, Wy ay + wya; - wa;, = 3,

(3.5) w3 B320s+ wq'(ﬂu“z"‘ﬁu“a) = %’
waﬁazaaaz’l" g (faaasastBiaazas) = lay
waﬁsza§+w4'(ﬂ4za§+ﬂ4aa§) == ilEa s Pa3f320s = 2%-

We have the following theorem:

THEOREM 1. Let us assume that ¢(x) and f(z, y) are of class C° in the

interval v, < @ < To+hy and in the set Q, respectively, and that the quantities
(3.1) are defined.

Under these assumptions
(3.6) Condition W <> Condition U .

The proof can be found, for example, in Berezin, Zhidkov [1].

4. The difference equation for the Runge-Kutta method can be
found in the following way:

From relation (3.3) it follows that

4 4
(4.1) D gl = D ok —g (@, h);
=0 j=1
hence (3.2) can be written in the form:
4
(4.2) Pusi—Pn =, O+ €4(8,, h) —£5(@,, B).
ij=1

Thus the solution ¢(x) satisfies equality (4.2). If on the right-hand
side of (4.2) the member ¢ (x,, k) —&,(2,, k) is dropped, then we obtain
a difference equation for the unknown discrete function y, = y(2,):

(4.3) Ynpr— Z w; K},

j=r
where

kﬁ? = kb f(Zp, Yn), ké’;’ = h-f(x, +ah, Y+ Ba k%))s
2
(4.4) K = hef(an+ ash, gut ) Buukly),

§=1

R P R )

§=1
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We shall impose the same initial condition

(4.5) Y(@0) = Yoy

for the solution y(z) (# ==,) (» = 0,1, ...) of the difference equation
(4.3), (4.4) as for the solution ¢(z) of the differential equation (2.1).

5. The location of the solution ¥, of the difference equation is con-
nected with the determination of the set where the quantities (4.4) and
(3.1) can be defined.

Let us write

(5.1) y = max(y;, ¥z, ¥a)s
where
.4 2 1'
(5:2) ya=M-Dlojl, 7 =M D Bl, vs=MD Il
j=1 g=1 8§=1

4

4
We have y> M, since }) w; =1 and 1<)} |w; therefore M
j=1 =1
<M Z lwl NSV

Let us denote by (&,, n,) the point of intersection of the straight-line
Y = Yo+ y(x—x) (x> ) with the boundary &P of the rectangle P and
by (&,, #.) the point of intersection of the line y = y,—y(x —2,) (x> z,)
with OP.

Let us denote

(5.3) f = min(&+hy, &, &),
(6.4) I®: g, <o < B, [Y—yol <y (®—1).
Thus the triangle T is contained in the rectangle P.
We introduce the nodal points

By Ty < T < o<y =0, p—ay=N-h,

Tpy—%,=h (n=0,1,...,N-1)

(5.5)

in the interval z, < # < f. The mesh size h will be regarded as a constant.
With a variable mesh size %, the main idea of the paper does not change
essentially.

6. We now prove

THEOREM 2. Let us suppose that ¢(x) and f(z, y) are of class C° in the
interval x, < « < x,+ hy, and the set Q, respectively, and 0 < a; <1 (i = 2,
3, 4).

Under these assumptions:

(i) the solution y, of the difference equation (4.3), (4.4) satisfying the
initial condition (4.5), is defined for n = 0,1,...,N;
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(i) the poimts (2,,y,) (n =0,1,...,N) are in the triangle TV,
of. (5.4);

(iii) the quantities (4.4) are defined for n = 0,1, ..., N.

Proof. We proceed by induction.

(a) The point (x,, ¥,) belongs to the triangle T®.

(b) Let us assume that for a fixed natural number p (0 <p << N —1)
the value y, is defined and

(6'1) ($p9 yp) € 1'(4)'
We shall prove that the next value y,,,, is defined and
(6'2) (w;p+l’ yp+1) € 1'(4) *
For this purpose we shall verify that
(6.3) (w,+ ah, Yo+ .8_21 k%’) € -T“):
2
(6.4) (2,4 a5k, 9o+ 3 By kD) € T,
&§=1
3
(6.5) (0 + asky 90+ D) B KD} e T,

§=1

First we prove (6.3). From the induction assumption (6.1) and defi-
nition (5.1) of the number y it follows that

(6.6) Bar M| < 1Bl B 1f (@ Y,)| < 0ah M < B M < iy,

cf. (3.5), which means that relation (6.3) holds. Thus the value f(z, ¥
at the point (6.3) and the value ki) are defined.

Secondly, we prove (6.4). From the induction assumption (6.1) and
definition (5.1) of the number y we get

2 2
(6.7) | Y 8o k2| < ) 1Bl M < By,
8=1 8ml
cf. (3.5), which means that relation (6.4) holds. Therefore the value f(x, )
at the point (6.4) and the value k{ are defined.
Finally, we verify (6.5). From (6.1) and (5.1) it follows that

3 3
(6.8) | 3 kDl < 3 1811 B <y,

8§=1 8=1

cf. (3.5); hence we obtain (6.5). This means that the value f(z, y) at the
point (6.5) and the value &) are defined. ‘

Now we write the difference equation (4.3) for » = p, and we see
that the value y,,; i8 defined.
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In addition

4 4
(6.9) 1= sl = | X kD] < > Iyl -RM < By,
j=1 i=1
cf. (5.2); hence relation (6.2) holds. Thus the solution ¥, of the difference
equation (4.3), (4.4) satisfying the initial condition (4.5) is defined for
n=20,1,..., N and the points (2,,7,) (» =0,1,..., N) are in the
triangle T,
This completes the proof of Theorem 2,
Remark 1. In a similar way we can prove that

(6.10) (#n+ash, @, + B k(ln)) € T“)’
2
(6.11) (@ + @shy gut D) Bosk) € T,
§=1
3
(6.12) (a+ @by @ut D) Buak?) € T,
8=l

for r, <@, <p n=0,1,..., N—-1), 0< ;<1 (2 =2,3,4), and for
¢(x) and f(x, ¥) of class C°. This means that the quantities (3.1) are defined.

Remark 2. In the next section we shall use the following well-known
theorem on difference inequalities:

If R, (n = 0,1,2, ...) denotes a discrele function satisfying the differ
ence inequality

(6.13) R, <AR,+p (A,u—const), R,=0,

where R, = h~'+(R,,, —R,), then the estimate
(6.14) Rng-%-(e"hd—l) m=0,1,2,...,

holds for n = 0,1, ...

7. The convergence of the Runge—Kutta method of the fourth order.
Let us write

(7.1) p(h) = max|e(,, b)|,
‘where "
(7.2) &(@y, b) = B[y (2, h) — & (2, )],

From definition (7.2) and (3.4) it follows that
(7.3) u(h) = O(h").
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Let us denote, additionally,

(7.4) Tn = Pn—Yns 1‘,: = bt '(rn+1 —7).

THEOREM 3. Suppose that ¢(x) and f(z, y) are of class C° in the interval
2y <2< £+ Ry and in the set Q, respectively (cf. Section 2). .

Further, assume that 0 < a; <1 (1 = 2,3, 4) and denote by L, M the
constants ocourring in Section 2, cf. (2.3) and (2.4).

Under these assumptions:

(i) the Runge-Kulta method is convergent
{7.5) r, >0, as h—->0, z<r,<pf n=01,...,,N),

(ii) we have the error estimate

h
{7.6) [7al < M;) (" —1) (n=0,1,...,N),
where
4 4 i-1
(7.7) A= 3{2 lel+$h-22 loo; Bl +
i=1 1=2 g=1
4 k-1 -1

+ LR 22 2 lwkﬂhﬂzs[+$3h3]w4ﬁ43ﬂ32ﬂ21|}

k=3 i=2 g=1

Proof. The difference quotient #,, cf. (7.4), can be written in the
form

4
(1.8) ra = D @ b7 (M0 — kD) + e(a,, B),
j=1
because of formula (4.2) and (4.3).
From the definition of the quantities %™ and kY, cf. (3.1), (4.4),
it follows that

(7.9) h"'(k‘f" —ki’,‘)) = fy(~1) Ty,

where (~,) denotes a suitable point in the triangle T®, cf. (5.4) and the
second part of Theorem 2.
In a similar way we obtain from (3.1) and (4.4) the formulas

1 . L
(7.10) = (MY =R =, () fra+ B (W — R},
l 2
(T11) (k=R = (~a) [t 3 B (P RGN,
§=1
1
(7.12) = (EM —E™) = f,(~, { o+ 2 Bus* (K — 1) }

8=1
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where (~;) (¢ = 2, 3, 4) denote suitable points in the triangle T, c¢f. Re-
mark 1, formulas (6.3)-(6.5) and (6.10)-(6.12).
If we insert into (7.10) expression (7.9), we get

1
(7.13) N '(k(zn)_k(zz)) = fy( ~q) Ty +fy (~2) fy(~) By - Py,
Now we can insert into (7.11) expressions (7.9) and (7.10). This yields
1
(T14) 5 (K7 k) = fyl~) 1t

+fy(~3) 'fy(~1)".331'h7’n +fy(~3) 'fy(""z)’ﬂaz'hrn"l-
+fy(~3) 'fy("‘"z) 'fy("“l)'ﬂszﬁnhzrn-
Finally, we insert into (7.12) expressions (7.9), (7.13) and (7.14) and
we obtain

1
(7‘15) 'F ‘(kﬁn)—kﬁ)) = fy( ~4) T +fu( Nd) fy( Nl) '1341'th +

+

Tu(~a) Ty(~2)Ban bry +Fy( ~4) - fy (~3) * Bas* br, +
Ju(~a) fy(~2)fy(~1) ‘BazBor-hir,+

+fy(~a) 'fy( ~3) fy(~1) '1343.331'h27n+

(

(

+

+y(~e) Ty (~a) fy(~2) - BasBae* W7, +
fv ~a) fy( ~s3) 'fy( ~3) fy( ~1)*BaaBs2Ba -k Tp-

Let us again consider formula (7.8). Taking absolute values on both
sides of (7.8) we get the inequality

-+

4
} 1
(7.16) o | < 2 oo | = (5 — k)

i=1

+u(h).

Now we can insert into (7.16) the calculated expressions (7.9), (7.13),
(7.14) and (7.15), which permits us to write (7.16) in the form

4 4 -1
(T17) a1 < Iral- 2] D) 1oyl + 20 D) 3 |yl +
j=1 =2 §=1

4 k-1 i-1

+ 28 3 3 D |onBiibial + L |0y iy Bra B} + 1 (B).

k=3 i=2 g=1
To simplify notation we use the symbol (7.7), so that (7.17) becomes
(7.18) Ira | < A-lrpl 4+ p(B).
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Write R, = |r,|. Then we have |r, > R, and we get from (7.18)
the desired difference inequality and the initial condition for R,:

(7.19) R, <A-R,+u(h), R,=0.

Inequality (7.19) and the theorem on difference inequalities, cf.
Remark 2, permit us to write the estimate

{7.20) RngL:) (€1 —1) (n=0,1,...,N).

But nh < Nh = d, where d = const denotes the length of the inter-
val: d = f—x,. Thus, inequality (7.20) and the condition 0 < ux(k) - 0,
as h — 0, imply that
{7.21) 0O<KE,—~»0, ash->0 (n=0,1,...,,N).

Therefore we have
{7.22) r, >0, ash-—->0, g <z,<f (*r=0,1,...,N).

This completes the proof of convergence.
The error estimate follows from (7.20) and has the form

h
(7.23) |1’nl<%l ("1 —-1) (n=0,1,...,N),
for r, <2< p.
This completes the proof of Theorem 3.

8. Remark 3. Let us restrict our considerations to the values
a3y a3, 0 < @; <1 (¢ = 2, 3) such that w; and §;, are non-negative numbers:

(8.1) w; =0, ﬁis =0

forj=1,2,3,4;9=2,3,4;8 =1,2,3;7> 8 (e, = 1 and the set a,, a,
is not empty, cf. for example Berezin, Zhidkov [1]).
Then we have

4 i-1 4 k-1 1-1

(82) A= 3"{ 2 wj"—g.hzz wifis+L2 0 22 2 @3 BriBist+

= =2 s=1 k=3 im2 g=1
+ 220 ’waﬂwﬁazﬂzl}

by the definition of 4, cf. (7.7) and (8.1).
From (8.2) and (3.5) it follows that for non-negative w,, 8;,, cf. (8.1),
the corresponding formula for the quantity /4 has an interesting form

1 1 27,2 1 333
(8.3) A=.Z’-(1+a$h+§$h+ﬁ.?h :
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