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A FAMILY OF COMPLETE ARCS
IN FINITE PROJECTIVE PLANES

BY
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A k-cap in a geometry is a set of k points no three of which are collinear
([5], p. 48). In a finite projective plane it is called a k-arc.

An arc is said to be complete if it is not properly contained in another
arc ([5], p. 148).

In [9] we showed that under certain circumstances the intersection of
two unitals in a projective plane PG (2, ¢) is a (g2 —q+ 1)-arc. These arcs
will be referred to as unital-derived arcs.

In a later article [10] we proved that the point set of PG (2n, ¢?) is a
disjoint union of (¢>"*!—1)/(g—1) caps, each containing (¢*"*'+1)/(g+1)
points. Furthermore, these caps, as “large points”, form a PG (2n, g) with the
incidence relation defined in a natural way. In particular, PG(2, ¢?) is a
disjoint union of a number of g>+g+1 unital-derived arcs, constituting the
“large points” of a PG(2, g).

At the time that these papers were written we were unaware that the
unital-derived arcs in PG (2, q?) are complete for g >-2. If g = 2, such an arc
comprises three points, and therefore three lines joining them, but three
nonconcurrent lines in PG (2, 4) contain twelve points altogether, short of
the twenty-one points of the plane.

Later on we demonstrated the completeness of the unital-derived arcs.
This is an important fact for the following reason: it was proved long ago by
B. Segre ([7], Theorem 10.3.3, p. 233) that in PG (2, q), g even, the cardinali-
ty of a complete k-arc which is not an oval (i.e.. for which k < g+ 2) satisfies
k < q—./q+1, but it was not known whether this bound is sharp. Well, as it
turns out, our unital-derived arcs provide the affirmative answer to this
question for any g =4™, m > 2.

We learned, however, that the completeness of the unital-derived arcs
was proved by other authors in two separate papers [2] and [6]. The proofs
in both papers make use of a partition of PG (2, q%) into g>—q+1 Baer
subplanes.

Our proof is essentially different in that it is based on considering a new
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type of correlation of PG (2, ¢?), related to the well-known unitary polarities.
From our viewpoint, the unital-derived arcs are the absolute points of these
correlations (see below).

The general proofs in [2] and [6] are valid for g > 4, the case ¢ =3
being treated separately at the end of each proof. The approach in the
present article includes all values of g in the general proof.

The notation we use in this paper is in keeping with [10].

A few well-known definitions are needed.

The points of a Desarguesian projective plane will be denoted by

column vectors:
x= (xz).
X3
Thus xT = (x,, x;, X3).

A correlation 0 of a projective plane is a one-to-one mapping of its
points onto its lines and its lines onto its points such that the point x is on
line L if and only if the point I? is on line x° ([8], p. 90). The point a is an
absolute point of 6 if aca’.

If 62 =1, 0 is called a polarity.

A =(a;) being any matrix over the finite field GF(q?), we write
A@ = (a%). Also, A~T will stand for the inverse of A”.

A square matrix H = (h;) over GF (¢?) is said to be Hermitian if hf; = h;;
for all i, j (see [4], p. 1161). This is equivalent to requiring that HT = H@, In
particular, h; eGF (q). If H is Hermitian, then so is p(H), where p(x) is any
polynomial with coefficients in GF (g).

It is known that Desarguesian projective planes PG (2, ¢%) admit unitary
polarities, which can be defined using Hermitian matrices [8]. A unitary
polarity has ¢*+1 absolute points, i.e., points that are incident with their
own images.

Given a nondegenerate Hermitian matrix H = (k;;), it defines a unitary

polarity whose absolute points are precisely the g*>+1 points x that satisfy
the equation

xTHx9 =0
or, in the explicit form
hyy X351+ by xy X8+ h 5 x] X5+ hy3 Xy X3+ i3 x4 x;
+hy, x84 hyy x, X3+ hS3 x4 x5+ hy3 x3T = 0.

The structure that is made up of the absolute points and the nonabso-
lute lines of a unitary polarity is called a unital ([8], p. 57). When we refer to
a unital, we shall mean its point set.

In agreement with [10] we denote the set of points |x: xT Hx? = 0! by
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{H}. It was shown in [10] that in order to obtain the (g>—q+ 1)-arcs in
question, one needs to consider a 3 x3 Hermitian matrix H with character-
istic polynomial p;(x) primitive irreducible over GF(q).

We then have p;(H) = 0 and the Hermitian matrices H' (j=1, 2, ...,
q°>—1) are the nonzero elements of a finite field GF (¢%). Its GF(q) subfield
contains the scalar matrices al;, a eGF (g).

It was also shown in [10] that if we consider the family

x={H:i=0,1,...,¢*+4},

the polynomial |H"—AH®| has no roots in GF(q) for any distinct H", H® €.
Furthermore, the point set {H"} n {H*} is a unital-derived arc and PG (2, ¢?
is a disjoint union of such arcs.

Let now H', H* €y, z be a primitive root of GF(g?), and z' any element
of GF (¢%)\GF (q). Then the matrix K = z' H"+ H* is not a scalar multiple of
a Hermitian matrix: if it were, then (z/c) H"+(1/c) H®* would be a Hermitian
matrix for some ¢ # 0. Let H" = (a;;), H® = (b;j) and put u = z'/c, v = 1/c. We
now get

(ua;;+vb;)? = pa;+vb;  for all i, j.
This becomes
(k—pha;+(v—vY)b; =0.

But the last equation implies pu = p, v =9, because H’, H® are not
scalar multiples of each other. Hence u/v = (u/v)4, i.e., u/veGF(q), which is
false, because u/v =z'¢ GF(q) by assumption.

Having shown this, we use K to define a correlation 0 of the projective
plane:

(1) @®={x: xTKa? =0}, {x:x"Tb=0}=K Tp".

Checking that 6 is a correlation:
Let ceix: xTh=0), ie, ¢"b=0. Then we have to prove that

x: xTh=0)%d,

which means that (K~ T b@)T Kd? = 0. This reduces to b?” ¢® = 0, which is
equivalent to ¢"b =0.

The converse is proved similarly.

Now 6% is a collineation and for any point a we have

) a” = {x: xTKa?® =0}’ = K- T(Ka?)® = K" TK@a,

We claim that 6 is not a polarity, ie., that 6% # 1.
By (2) we have to prove that K"TK@ % II, for any l. Assume that
K~TK@ =I,; in other words, K@ = [KT. This implies successively:

K=8K9T = KT = BK@ = (|+ 1) KT = (94 1) K@
=[(I+ )K" =[(1+1)K]?9 = (I+1)K is a Hermitian matrix.
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Thus, if [# —1, then K is a scalar multiple of a Hermitian matrix,
which we know is false.

If I=—1, we get K9 = —KT. Choose any nonzero ueGF(g? that
satisfies u9~! % 1 and let B = uK. We then have

B@® = y9K@® = — 9 KT = — a1 BT » BT,

Letting —u?~! = m we obtain B = mB”, which leads, as before, to
(m+1)B=(m+1)uK being a Hermitian matrix, so K is again a scalar
multiple of a Hermitian matrix. Therefore 6% # 1.

By (1), the absolute points of 6 are those points x which satisfy

xTKx? =0, ie, 2zxTH x?+xTHx? =0.

As z'¢ GF (g), and since x” H" x@ and xT H*x9 are elements of GF (q),
the last equation can only hold if

xTH x? = xTH x'9 = (.

This discussion shows that the set of absolute points of 6 is precisely
'H"! ~ 'H*'. This observation is valid in general: the intersections of nonde-
generate unitals, which were exhaustively studied in [9], constitute the sets of
absolute points of a special family of correlations: let H, and H, be two
nondegenerate Hermitian matrices. Then the intersection |H,) N |H,] is
actually the set of absolute points of the correlation 0 given by (1), where K
=H,+zH,, z is any element of GF(q?)\GF(q). In particular, when
{H,} n{H,} contains one point (see [9]), the corresponding correlation has
exactly one absolute point. This constitutes the first example of an, infinite
family of correlations with one absolute point..Until now only one very
simple example has been known of a correlation with exactly one absolute
point [1].

Back to our 6% defined by (2):

Lemma 1. The cyclic group <6*) permutes all the points of PG (2, q°) in
orbits of equal length, a divisor of q* —q+ 1. Moreover, the orbit of each point
is a subset of the (unique) unital-derived arc containing it.

Proof. The characteristic polynomial of H is p;(x) with coefficients in,
and irreducible over, GF(g). But a polynomial of odd degree with coefficients
in GF (q) is irreducible over GF (g) if and only if it is irreducible over GF (¢?)
(see [10], Lemma 3). So p,(x) is irreducible over GF (q?) as well. As such, H
defines a GF(g°%), call it &, the elements of which are matrices of the form
oH?>+6H +1l5, o, 0, 1 €GF (q%).

The GF (q*) subfield of @ consists precisely of the Hermitian matrices
oH?*+oH +1l5, 9,0,1€GF(q); the GF(q? subfield comprises all scalar
matrices tl5, 1 €GF(g?).

Let the matrix N be a primitive root of ¢. Then N is non-Hermitian

and N?° = N.
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Let now K =z H' + H°, H', H*ey, ' €GF(q?)\GF(g), as before. Then
K = N* for some v.

K defines the correlation 6 given by (1) and the collineation 0 deter-
mined by (2).

By (2) we have a®*’ = (KT K@) a for any g. Hence the orbit length of a
given point a under ¢6?) is the smallest positive integer g for which a is an
eigenvector of (K~ T K@),

Since Ked®, we have K = gH?>+oH+1l, for some ¢, g, 1 €GF(q?),
whence

K™ = g* H*+ ¢ H+11,.
It follows that K+ K™? and KK are Hermitian matrices (check!). This in

turn shows that if K = N°. then KT@ = Nv¢°;

Assume, contrariwise, that KT® % N*>. Then K™% = N*© £ N* for
some integer w and we have

(K+KT(q))q3 — (Nv+qu3+NW)q3 — qu3+ N*+ qu3’
(KKT(q))q3 — N,,q3 (qu3+NW)q3 - Nuq3 (Nv+qu3).

But (K+KT9)? (KK™®)?* must equal K+KT™®, KKT?, respectively,
because they are Hermitian matrices, and thus belong to the GF (g*) subfield
of @. This gives first

N £ N*+ N*¢* = N*+ N*¢* 4 N,
whence N*?° = N*. Next.
N2 (N®+ N*9°) = N*(N°" + N*¥),
which now reduces to
(N*©* —NY)N* = 0.

Here N*¢° # N because K ¢ GF (¢%).

As no nonzero matrix in @ is singular, the last equation cannot be valid,
proving our assertion that

K = N = KT® = N*©°.
This in turn leads to
K—TK(q) — (N—v)T(qu3)T — Nv(q3— l)T.

Therefore
(3) (K~ T K(q))a = N9

3_HT

Thus the orbit length of a point a is the smallest g for which a is an
eigenvector of N¢v@ DT,
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For any integer w and any point a, the vector N* a has entries in the
original GF (g?), because so do N and a. Hence, if a is to be an eigenvector
of N*, the corresponding eigenvalue must be an element of GF(g?). On the
other hand, if 'f. is a characteristic root of N, then " is a characteristic root
of N*. The powers of ¢ belonging to GF (¢?) are of the form B(q®—1)/(g*>—1),
B an integer. Thus the only powers of N whose characteristic roots are in
GF (g% are of the form B(q*+4g%+1).

But N?@**+4®*1 js an element of the GF (%) subfield of @, ie.,
Ne@*+a>+1 — rf for some (.

3_yT

Thus for a certain point a to be an eigenvector of N¢"@ , we must have

Nev@® =0T — r]. and then all the points of the plane are eigenvectors. That
is why the orbit length is the same for all the points.
Now, in order to find the common length, observe that

Nov@® -1 — NPt +a?+1)
whence the orbit length is the smallest positive number g for which
q*+q*+1lgv(g®>~1) or ¢g*—q+1igv(g—1).
This yields
@ g=1(q"—q+D/(g>—q+1,v(q-1)

Therefore, g is a divisor of g>—q+1, as desired.
To prove the last claim of the lemma, let

ac\H n\H*), H' H'ey.

We have to show that a"ze{H'} N \H*} as well. By (2) we get
e H' <K TK9ac!H" <K TK@aT H'(K" TK? a)® = 0
<aTKOTK-'H'K-T?Kd9 = 0.
Multiplication in & being commutative, the last equation can be reduced to

a’ H" a9 = 0, which holds by assumption.
Similarly, a"ze{H’} <ae H*), which completes the proof.
In the definition of K = z' H' + H*, z' can be chosen in ¢?—q different

ways. On the other hand, we have seen that, as a member of &, K can be
written as K = N*. Now we need to prove the following

Lemma 2. If K =Z'H"+ H* = N*, as z' ranges through GF (q*)\GF (q),
the exponents v range through the nonzero residues modulo q*>—q+1.

Proof. We have to show that z* # z'" implies

v# v (modg?—gq+1),
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where
ZH +H*=N°, ZH +H*'=N", Z zeGF(q%>\GF(g).

Assume v = v'+h(qg*—q+1) for some h. Then
(5) ZH +H* = (" H' + H) NHa* o+ D,
But N™a2-a+1) — Nha*+q2+1) N -hatg3+1)

Here, the first matrix on the right-hand side is a scalar matrix: its
(g®—1)-st power is NMa®=1 and since N is a primitive root of GF (g%, the

latter equals I;. Hence NHMa*+a>+1) eGF (¢?), and all the elements of this
subfield are scalar matrices.
The second matrix on the right-hand side is Hermitian, because it

belongs to the GF (¢°) subfield of ®. Hence N*¢*~4*V = z¢ HS for some c, f,
and (5) becomes

(6) 7t H +H® = zc(zt’ H'+I+Hs+f).

Here, f is not a multiple of g*>+q+1, for if it were, H/ would be a scalar
matrix al; and (6) would then reduce to

(Z—az**"Y)H +(1—az)H* = 0.

As H', H* are not linearly dependent, this gives az‘ = 1, and then z' =z, in
conflict with our assumption.
Next we show that if (6) holds, then

(7) (H") o (H?) = (H'*/) H )
Let ae{H"} n {H*}. This implies successively
aA"H a? =a"H*a® =0=a"(z’ H'+ H)a¥® =0
=zt aT Hr+fa(q)+a7' Hs+f a? = 0.

But a"H'*/ a9, a" H**/a? eGF(q) (easy check) and unless they both
vanish, we get the contradiction z*" €GF (q). Hence ae{H"*/} n {H**/}. The
converse is proved in a like manner. So (7) holds.

It was shown in [10], p. 1304, that the unitals under consideration and
their intersections (the unital-derived arcs) can be viewed as the “large lines”
and “large points”, respectively, of a projective plane PG (2, q) with the
incidence relation defined in a natural way: a large point-is incident with a
large line if and only if the points of the unital-derived arc belong to the
unital. Now, if several lines are concurrent in a projective plane, any two of
their equations are independent, but any of the other equations is a linear
combination of those two.

Thus (7) can only hold if H**/, H**/ are linear combinations of H", H".
On the other hand, as was shown in [10], p. 1305, the exponents of H in the

5 — Colloquium Mathematicum 57,1
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g+ 1 linear combinations of H’, H* must form a Singer difference set with
parameters (see [11])

v=q*+q+1, k=gq+1, Ai=1.
In our case the difference set must include r, s, r+f, s+f. As
f#0 (modg?+q+1)
and also
r#s (modq®+q+1),

at least three of these four numbers are distinct modulo g®>+g+1; here is
why: ‘
If both r =s+f and s =r+f (mod g>+q+1), we get

2r =2s (mod ¢*>+q+1),

ie, r =s (modg*+¢+1), a contradiction.

If r, s, r+f, s+f are all distinct, the difference f will occur twice, violating
A = 1. If, say, r = s+f, we have the three distinct numbers s+f, s, s+2f, so
the difference f appears twice in any case.

This final contradiction completes the proof.

THeoreM. If H', H® are any two distinct Hermitian matrices in y, the
point set {H"} n{H*} is a complete (q*— q+ 1)-arc for any prime power q > 2.

Proof. As a consequence of Lemma 2 (and this is why we proved it), z'
can be chosen so that

v=1 (modg?—gq+1).

In this case (4) yields g = g>—q+ 1. Hence, for an appropriate choice of ¢, the
group ¢(0%>, where 6 is defined by (1), will be transitive on each of the unital-
derived arcs that partition PG (2, ¢?).

Assume now that a unital-derived arc, call it D, is incomplete; then there
is a point b¢ D such that the lines [b, d] are tangent to D for all deD. The
point b must belong to a Hermitian arc, say B. It can then be shown that,
deD being fixed, the lines [b, d] are tangent to D for all heB:

92i

By what has been found earlier, the points of B can be labelled b, b°",
i=1,..,q>—q. Likewise the points of D.

If now for some i the line [b"Zi, d] met D at & also, it would follow

that the line [b, @ ] intersects D again at d®’~”, and this cannot be.
Since B has g>—gq+ 1 points, it takes at least 1+(g*>—q)/2 distinct lines
to join d to all the points in B and none of them meets D again. Then d is
also incident with g2 —gq lines within D. Besides, B and D are contained in a
(unique) unital, because any two large points are contained in a unique large



FINITE PROJECTIVE PLANES 67

line by the axioms for projective geometry. Then through each point on a
unital there passes exactly one line tangent to that unital [3], so d is
contained in one more line.

Summing up, d is contained in at least 1+(q>—q)/2+4g>—q+1 lines. But
this number is strictly greater than g2+1 for g > 2, and the proof is
completed.

CoRroOLLARY. The point set of a Desarguesian plane PG (2, ¢%), q > 2, is a
disjoint union of q*+q+1 complete unital-derived arcs.
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