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Fréchet’s equation and Hyers theorem
on noncommutative semigroups

by LAszLo SzexeLyHIDI (Debrecen, Hungary)

Abstract. In this paper the Fréchet’s functional equation on noncommutative semigroups is
dealt with it is shown that under some conditions the general solution can be described by
multiadditive symmetric functions, just as in the commutative case. The study of higher order
differences in the noncommutative case leads to a generalization of the theorem of Hyers on the
stability of the linear [unctional equation, in the case of amenable semigroups.

1. Introduction. Let G be a semigroup with identity e and let H be a
linear space over the rationals. For any y in G we define the left and right
translation operators ,T and T, and the left and right difference operators ,4
and 4,, as follows: for a function f: G — H let

yIf ()= fyx), T, f(x)=f(xy)
and
A=,T~1, 4, =T -1,

where x ranges over G and I denotes the identity operator: I = _,T = T,. For
products of difference operators we use the following notation: , 4-...-, 4 is
denoted by ,,, "4, and 4, -...-4, 1is denoted by 43, .

Now we recall the notion of invariant mean and amenability. If B(G)
denotes the Banach space of all bounded complex valued functions on a
semigroup G (with sup-norm), then a positive linear functional M: B(G) - C
is called and invariant mean on G if it is translation invariant (i.e, M(,Tf)
= M(T, f) = M(f) for all fin B(G) and y in G) and normalized (M (i) = 1).
We write M, instead of M when we wish to indicate the variable. If an
invariant mean exists, we call G amenable. For example, every commutative
semigroup is amenable. For more information about invariant means and
amenability see e.g. [7].
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2. Fréchet’s functional equation. In this section G denotes a fixed

semigroup with identity e, H denotes a ﬁxed linear space over the rationals
and n>0 is a fixed integer.

Fréchet’s functional equation
(1) ALy S () =

for all x, y,, ..., ya+1 In G, where f: G— H is an unknown function, has
been dealt with by many authors (see eg. [1}-[3], [6], [8], [11], {12], [14],
[15]). In the case when G is Abelian, it has been proved that f is a solution
of (1) if and only if it can be expressed as the sum of the diagonalizations of
multiadditive symmetric functions of at most n-th degree. (For an integer k
> 1, a function 4: G*— H is called multiadditive, or more precisely, k-
additive, if it is a homomorphism of G into the additive group of H in each
of its variables. Here the number k is the degree of A. The diagonalization
D(A) of A is defined by D(A)(x) = A(x, ..., x). In this connection, the
constant functions are called 0- addztwe) The aim of this section is to show
‘that this result remains valid also if G is noncommutative under the addition-
al assumption

(2) S (txy) = f(tyx)
for all x, y in G.
Lemma 2.1. Let f: G — H be arbitrary; then

v AL () = AT, (T
for all x, y,, ..., Yasy in G.

Proof. This is verified by induction on n. For n =0 we have

nAf () =06,T=Df(x) =1y x)-f(), _
4, (TN =(T, -DT.f(e =T f(y)-T.f(e) = f(y1 x)— f(x).

Suppose that the statement holds true for n; then we get

n+1

yieedwni 1 AL () = oy TAS (1 X) =y AT (%)

30 ,,,H( yle)—d coone 1 (T N1(e)
S0vmsy (= T S (€)]

=[45,. 50 (L, DT fl)=4571, . (T f)(e)

and the lemma is proved.



Fréchet’s equation and Hyers theorem 185

LEMMA 22. Let f: G— H be arbitrary. Then
(€)Y § A 3 I LAy i ( 1)+A;'f,.'..,,,,+1f(?)—42,\;1' ..... vad (€
for all x, y,, ..., Yyps1 in G.

Proof. The proof is a matter of a simple calculus with use of Lemma
2.1. The right-hand side of (3) is

[T, (B,=D.. (T, —D(T=D+(T,, , —D..AT,, =D~

~(%,=D)...(T,, = D(T=D1f(©) -
=[(T,,,~D(T,~D...(T, - (T~ D+
+(%,, =D (T, =D1f @ = 4321, (T )@,

which is just the left-hand side, by Lemma 2.1.
LEMMA 23. Let A: G" — H be an n-additive symmetric function. Then

. " n
(1) A(xy, ..., xy) =) ()A(x,...,x, Vyeees V),
k=0 k N -~ RN —
k-times n—k-times
(11) 45,....sa DAX) = nl A(yy, ..., yi),

for all x,y,,...,y, vy in G.

Proof. Both statements can be proved just as in the commutative case
(see e.g. [3)).

LEMMA 24. Let f: G— H be a function satisfying (1). Then

51’1""'6)'n+1f(x)=0

Jor all x,y,, ..., Yyo+1 in G, where each o, denotes either ,A or A,, inde-
pendently.

Proof. First of all we remark that the operators ,4 and 4, commute for
any y, z in G; this follows directly from their definitions. This means that
it is enough to show that

P R LA f(x)=0

Y+ 1Y+ 1

for all x, y{, ..., yo+1 in G and for any integer k with 1 <k < n+1. By
Lemma 2.2 we have

k - \
yl....,ykA (A;:’_..ll,.'f.,y”.', 1 f) (x) = A;k++11.....)!n+ 1% Y1V —-1 f(}k) +

+1 +1 _
+A;k+.l""'yn+ l'yl"”'ykf(e)_A;k+ 1,...,y,,+ 1,x.y1.....yk_ 1 f(e) - 0

and this proves the lemma.
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THEOREM 2.5. Let f: G = H be a function. Then the system of functional
equations (1), (2) is satisfied if and only if there exist k-additive symmetric
functions A,: G* =2 H (k =0, ..., n) such that

f(x)=DA,(x)+ ... + DA, (x)+ Ay
for all x in G.

Proof. The if part is trivial by Lemma 2.3. Now suppose that (1) holds.
Then obviously x — 47, f(x) is constant for all fixed y,, ..., y, in G. Let

------

1
An(yh"" yn)=;A;1 ..... y"f(e)

for all y,, ..., y, in G. By (2) it follows that this function is symmetric. We
claim that it is also n-additive. Indeed, we have

An(.vl }71’ Y2, .00 yn)_An(yl’ ] yn)_An(fla R yn)

\
=F[A; Yon(Gys = D=4, (T, —D=457" , (T;, —D1f(e)

[A" (B = T =T £ D11 (e)

1
= [45. 5,5, —D(T;; —D1f(e) = —A;f}, y2ynd (€) =

for all y,, ¥,, V2, ..., Vs in G. Now we define ¢ = f —DA,, and we get by
Lemma 2.3
A; yng(x) = A;I....,ynf(x)_A;'l....,ynDAn(x)

......

=A;1 ..... ynf(x)_n!An(yl""s yn)=0a

which yields by induction on n the statement of the theorem.

3. The theorem of Hyers. Hyers’ theorem in its original form [9] states
that any approximately additive function can be approximated by an addi-
tive function. More precisely, if f is a real function for which the expression
f(x+y)—f(x)—f(y) is bounded, then there exists an additive function A4
such that f—A is bounded. This result has been generalized by several
authors in several directions (see e.g. [2], [4], [10], [13], [16]-[20]). The
extension of this result to Abelian groups, and even to Abelian semigroups, is
obvious. The question whether the result remains valid in the noncommuta-
tive case was answered by Forti [5], who has shown that on the free group on
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two generators the statement of Hyers’ theorem i1s false. On the other hand,
we showed at the 22nd International Symposium on Functional Equations in
Oberwolfach, West Germany, 1984, that the theorem remains valid, if the
group (or semigroup) in question admits an invariant mean. By using the
same technique, in [16] we proved the following theorem, which is also due
to Hyers [10]: Let G be an Abelian semigroup with identity, f a complex-
valued function on G, for which the function (x, y) — 45"}, f(x) is bounded.
Then f— P is bounded for some complex-valued function P on G satisfying
(1). The aim of this section is to prove the analogue of this result in the more
general case, when G is merely an amenable semigroup with identity. We
denote by C the set of complex numbers.

THEOREM 3.1. Let G be an amenable semigroup with identity and
f: G = C a function for which the function (X, yy, ..., Ya+1) — A"“ yasrq S (%)

is bounded. Then there exists a function P: G —C satisfying (1) for which
f —P is bounded.

Proof. Let M denote any invariant mean on G. From our assumption

on f and from (3) it follows that also the function (x, yy, ..., Yn+1)
n+1

s 4f(x) is bounded. Further, we have for all y, ..., y,+, in G:

Mx[yl,...,y:IiAf(x)] = Mx [yz ..... Yn+ I’IAf(yl x)_ Yn+1Af(x)]
= Mx [ylx.yz ..... y:::Af(e)_x.yz ..... y:I}Af(e)] = 07

because M is invariant. From this we obtain the identity

4 Myl"'MYh("l “:I:A Ak .ka)_( ":::Af

for all y,, ..., ¥, 4y, ..., Up4, in G, by using (2) and induction on n. Now we
define

foy=(=1'M, ..M, (437" , . f(e))

for any x in G. Then obviously f, is bounded. Further

..... SHAS =) () =y TS (0 +
=D UM, M, AL f(0 =40, ()]

Uisreenlint |
T ..,",i}Sf(VH( )”+l My, ..My L1445, N)(¥)]=0
by (4), and if we let P = f— f;,, then the results of the previous section —

which obviously remain valid when we interchange the roles of the left and
‘right difference operators — imply our statement.
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Remark 3.2. The proof of the theorem and the identity

A;;}..,yn+1 f(X) = A;;:,,1.y1.,...y"f(e)_A:.-;ll,...,y,,f(e)

show that, for the validity of 3.1, it is enough to assume that the function
W15 eoos Vat 1) — ant! f(e) is bounded.

Yir¥n+ 1

Remark 3.3. Combining the assertions of 2.5 and 3.1 we have the
following statement: if G is any amenable semigroup with identity and
f: G—C is a function satisfying (2), then the function (x, y,, ..., Yo+1)

—»A;l“_,"_‘,n +, S (%) is bounded if and only if there exist k-additive symmetric

functions A,: G*—=H (k=1,...,n and a bounded function f,: G =»C
such that

f(x) =DA,(X)+ ... + DA, (x)+ fo(x)

for all x in G. Here the functions A, (k =1, ..., n) are unique.
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