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On the oscillation of ty" +»(t)y = 0 with f p almost periodic*

by D. WILLETT (Salt Lake City, Utah)

Abstract. The cquation of the title is oscillatory on [a, ), a > 0, if M {P3}—
— (M {P})2 >} and is non-oscillatory on [a, o) if M{P2}—(M{P})? < }, where
t

P(t) = [P and M{Q} denotes in geueral the mean value of @ as an almost periodie
o
function. The consequence of this result when p(¢) = Y apsin(B,t+ &,) is described,
n=1
and a generalization to y” + [a()p () + B(2)1y = 0 is indicated.

A second order differential equation
(1) ¥ +qt)y =0

with ¢(f) a continuous function is said to be oscillatory on an interval 1
if every solution not identically zero has an infinite number of zeros in
I. Sobol [2] proved that (1) is oscillatory on the real line R provided that
there exists a primitive [g¢ which is an almost periodic non-constant
function. Markus and Moore [1] proved that (1) is oscillatory on R pro-
vided that ¢(t) is an almost periodic function with mean value
1
M{q} = limT q(s)ds

T—oa "o

non-negative.

The point of this note is to discuss the oscillation problem for equa-
tions of the form
(2) " +p(t)y = 0
with [p almost periodic on R. Perhaps the simplest non-trivial equation
of the form (2) is
(3) ty'' +yasinft = 0,

which we proved in [3] to Dbe oscillatory on [a, o), ¢ > 0, if (a¢/f)2> }
and non-oscillatory on [a, oo) if (¢/f)? < 4. Wong [6] later showed that
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(3) is non-oscillatory on [a, o) if (a/8)® = }. The following results show
that the oscillatory behavior for general equations of the form (2) is
typlified by the oscillatory behavior just described for (3).

¢
TrEOREM 1. If P(i) = [p is an almost periodic function on R and
a> 0, then (2) is oscillatory on [a, oo) provided

(4) M{P*}~(M{P})" >}
and non-oscillatory on [a, oo) provided
(5) M{P*} — (M (P})* < .
CoROLLARY 1. If p(t) 18 an almost periodic function on R with Fourier
series i’ Anei””‘ (4, = M{p (t)e—f"’Lt}) and |v,|=»>0 (n =1,...), then

=1

(2) is oscillatory on [a, oo) (@ > 0) provided

D Ml > %

Ne=1

and non-oscillatory on [a, o) (a > 0) provided

> =]
D < %

ne=l

COROLLARY 2. If 2 a, and 2 a, /B, are absolutely conmvergent series

=l

and &> 0, then (2) 'unth
p(t) = D) aysin(Bui+3,)
n=1

18 oscillatory on [a, oo) if

Zlﬂn

and non-oscillatory on [a, oo) if

-]

Sl

& | By

The oscillation problem for equation (2) in the case of equality
in (4) and (8) is in general an open question. However, those equations

2
< 1.
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in this case for which there exists a constant £ > 0 such that

lnni‘[JI{P}——fP(s)ds -0,

{—ec

(6) .
lnnt'[JI{P - ] Pi(s)ds| = 0,
g ]

t—oo

can be shown to be non-oscillatory by using a theorem of J. 8. W. Wong
([6], Theorem 5, p. 206).

Theorem 1 has applications to the oscillation problem for (2) when
p(t) is an almost periodic function. In this ease, Theorem 1 is applicable
provided p(t) has an almost periodie primitive P(t), which is the case
if and only if P (%) 18 bounded. In addition, if Al {p} > 0, then (2) is oscilla-
tory by the well-known Fite—Wintner theorem ([4], Corollary 3.1, p. 603).
Thus, in this case there occurs the additional open problem when 7 {p} < 0

and f p is unbounded.

Proof of Theorem 1. Let 0(1) and o (1) be generic symbols denoting
a continuons function f(f) with the property that |f(f)|< C on [a, o0)
for some constant C and f(t) — 0, as { - oo, respectively. Let u = M {P?},
v = M{P} and

|4
r{) = %fP(s)ds—v.
0

Then

?

r y—P(t)—r(t) r(s) ,_ v—P()+o(1)
‘f ds t +2 tf 1

et [ 10 q
fQ(s)ds — = (t)+2a! Sds —o(1).

Theorem 1 is a consequence of Theorems 1.4 and 1.5 of [3], p. 180 (Corol-
lary 5.3 of [4], p. 615, or Corollary 3.2 of [5], p. 362), which state that
(2) is oscillatory provided there exists an &> 0 such that

(6) 4 (f Q"(r)dr)gdsz (1+e) [ Q*(s)ds,
i 8 i
and (2) is non-oscillatory provided

(7) 4f(f@2(z)dr)2ds<(1—e)fQﬁ(s)ds.
t s i
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In our case here,

oo

fQﬂ(s)ds = ﬂ—_”?ﬂ, J(IQQ(T)dr)zds _ (l‘—vg):+o(1)’

and so (4) implies (6) and (5) implies (7).

Proof of Corollary 1. It has been established in the theory of
almost periodic functions that the primitives P(f) of an almost periodic
funection is an almost periodic function provided that the Fourier exponents
. satisfy [y.| > y > 0. Thus, p(#) has an almost periodic primitive P (t)

(o=

A, » o .
with Fourier series 2—1 ¢ "‘, which implies that M {P} = 0 and

=1 a

WP = 3 Ayl

n=1

by Parseval’s equality.
Proof of Corollary 2. The function

o0

P(t) = — Egﬁeoswnw 8,)

n=l1

is bounded by )’ |a,/,l, hence, P(#) is an almost periodic function on R.
n=1

Furthermore, P(t) has Fourier coefficients

.Z'I{.P}’ ':)aﬁi e'_ani’ e 2_(;"’: eﬁni ('"' = 1’ e -);
“Fn n

thus, Parseval’s equality implies

M{P} = (M{P}+3 D) la, Bl

Inspection of the proof of Theorem 1 indicates that the almost peri-
odicity of P(t) is quite incidental, all that was required was the existence
of M{P} and M {P>}. We reflect this fact as well a5 some further gener-
alizations in the following theorem. ;

TUEOREM 2. Assume that f, pe C[a, o) (a > 0), P(t) = [p, v = M{P}
and p = M{P*) ewxist, *f(t)— A as t-+ oo, ae C%[a, 00), t*a’(t) = O(1),
o () >0 and 1a(t) > 1 as t— oco. If '

ptA=vi> 4,
then

(8) y' +Hlat)p@)+A(t)]y =0
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18 oscillatory on [a, oo), and if

pt+d—v < i,

then (8) is non-oscillatory on [a, o).

Proof. The situation here differs from the situation deseribed in

Theorem 1 primarily in the fact that here

{ t oo
Jewas =[[] (a('c)p(r)-{—ﬂ(t))dr] ds = Alogt+o(l);

hence, Theorems 1.1 and 1.2 of [3], p. 178 (Corollary 5.3 of [4], p. 615)
can. be applied.
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