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1. Let R be the set of all real numbers and let 4 be an open real
interval (finite or not). A funection f: 4 — R is called convex iff

1) f(w-;y) < f(sz-f(y)

holds for all pairs (z,y) in 4 x 4. A function f: 4 — R is called almost
convex iff (1) holds in 4 X 4 except for a set M = 4 x A4 of the planar
Lebesgue measure zero.

A natural question arises whether every almost convex function is
equal almost everywhere in A (in the sense of the linear Lebesgue measure)
to a convex function. An affirmative answer is established in Theorem 5.

The corresponding problem for additive functions, i.e. for functions
f: R — R satisfying Cauchy’s functional equation

(2) f(@+y) = f(x)+f(y)

had been raised by Erdos [4] and remained open for some years (cf. [1])
Recently it has been solved by de Bruijn [3] and Jurkat [6] (cf. also
Hartman [5]) who have proved that every almost additive function
(i.e. function satisfying (2) for almost all pairs (z, y)) is equal almost
everywhere to an additive function.

Similarly to [3] and [6], our considerations will be based on a certain
consequence of the Fubini theorem, which may be formulated as follows:

Let a,b,c,d be fixed real numbers such that ad— bc # 0, and let

M < RXR be a set of the planar Lebesgue measure zero. Then for almost
every s the set

{t|(at+bs, ct+ds)e M}
has the linear Lebesgue measure zero.

(Geometrically this means, roughly speaking, that almost every line
parallel to a given direction intersects M in a set of linear measure zero).
In the sequel measure will always mean the Lebesgue measure.
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2. The interval 4 being fixed, we denote by 4, the set
A, ={h|lv—hed and v+ hed}.

For every zed, 4, is an open interval centered at zero.
It is obvious that a function f: 4 — R is convex if and only if

inf f(@+h)+f(x—h)
4 2

T

f(@) =

(the infimum being attained at » = 0). Now we are going to investigate
to what extent the above statement remains true when the infimum is
replaced by the essential infimum.

We shall make use of the following result due to Bernstein and
Doetsch [2]:

Let f: J — R, where J 18 a finite closed interval, be a convex function,
and let J, be the set of points which divide J rationally. Then the restriction
of f to J, is continuous.

Now we prove the following

THEOREM 1. If a function f: 4 — R is convex, then

f@x+h)+f(x—h)
> :

(3) f(x) = infess
Ax

Proof. Let us fix an x4 and let us take an arbitrary set A < 4,
of measure zero. The set

B = an(A U (—4))

also has measure zero. For any hed,\B we have +2 "hed, \A, n =
=0,1,2,... By the theorem of Bernstein and Doetsch (applied to
J = {x—h,z+h>) we have

lim f(@+27"h) = f(),

n—>oo
which, together with the inequality f(z) < 3[f(x+ k)4 f(z— k)] resulting
from the convexity of f, proves that

 flw B+ f(o—h)
() o 2

= f().

(3) results from (4) in view of the assumption that A is an arbitrary
set of measure zero.

COROLLARY. If two convexr functions, defined on a common interval
4, are equal almost everywhere in A, then they are identical.

In order to derive from (3) the convexity of f we must assume
something more about the function f.
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THEOREM 2. If a function f: 4 — R is almost convex and (3) holds,
then f is convex.

Proof. It follows from (3) that for every xe A there is a set E, < 4,
of measure zero such that

(5) f@) < 3[f(@+h)+fl@—h)] for hed,\E,.
On the other hand, since f is almost convex, the set
6) o (@, 9)ed% 4 f(f-;—y) - L

has the planar measure zero. Hence the set
Vo ={yed|(w,y)e M}

has the linear measure zero for almost every ze4; i.e., there exists a set
Uc 4 of measure zero such that xeA\U implies |V, = 0.
Let us fix an arbitrary ¢ > 0 and put

(7) Q, = {hed, |3 [f(@+h)+f(2—h)] < f(#)+ &}.

In view of (3), for every xe A the set £, has a positive outer measure.
Let us take arbitrary x,yeA4 and choose an A’ such that

(8) B e N\[(x—TU) U (U—2)].

Then the sets V,_, and V., have the measure zero, and thus we
may choose an h'’ such that

(9) B eQN[Y—Von) Y (Vorn—y) Y (2E,—1')],
where
_xty
(10) - P = 5
Condition (9) guarantees that (r—Aa',y—h'")¢ M, (x+h',y+h'")e M,
i.e.,
hl+hl!
o= 5 < dtfe—w)+s w1,
(11)

h’ h’l
o+ 225 < dts@rm)Hrg+ ).

Further, it follows from (9) that }(A'+7%'')¢E,, whence

(12) fp) < %[f(er h'”") +f(p— h'”")].

2 2
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Finally, by (8), (9) and (7)
1f(@+h)+flz—1')] < f(®)+e,

HfY+r")+fy—n")]1 < f(y)+e.
It follows from (10), (12), (11) and (13) that

(13)

f($;y)<f(w):f(y)+s-

Letting ¢ tend to zero, we obtain (1).

Let us note that for measurable f condition (5) implies that f is almost
convex. Thus we have the following

THEOREM 3. If a function f: A — R is measurable and (3) holds, then
f s convex.

Remark. It may be interesting to point out that the set (7) need
not have a positive inner measure. In fact, let ¢(x) be a discontinuous
additive function and put f(xr) = expe(x). Then f(x) is a discontinuous
convex function. Taking x = 0, we have, for he£,,

f(h) <f(B)+f(—h) < 2(f(0)+¢) =2(1+¢).

Thus f(k) is bounded from above on 2,. By a theorem of Ostrowski [7],
£, cannot have a positive inner measure. (In fact, for every x¢R the set
£, has the inner measure zero).

3. It follows from Theorem 1 that if a funection f: 4 — R is equal
almost everywhere in 4 to a convex function ¢g: 4 — R, then

J(@+h)+f(x—h)
2

(14) g(x) = infess

a

y xed.

T

Now, we have the following

. THEOREM 4. If f: A — R is almost convex and g(xz) is defined by (14),
then

(15) f(x) = g(x) almost everywhere in A.
Proof. Let M denote the set (6) and let us write
T,={hed,|(x,2+h)e M}, 8, ={hed,|(x—h,z+h)e M}.

For almost every weA the sets T, and §, have measure zero, i.e.,
there exists a set U — 4 of measure zero such that xeA\ U implies |T,|
= |§,] = 0.
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Let us fix an arbitrary ¢4\ U and an arbitrary set 4 < 4, of
measure zero. The set

B _—.Qozn(A U(—4)UT, U (—T,) U8,

also has measure zero. For any he 4, \B we have
(16) 427"h¢d, +27"h¢T,, +27"h¢S,, n=0,1,2,..,
In particular, h¢8,, whence (x—h,x+h)¢ M and
f(#) < 3[f(z+h)+ flz—R)].
Consequently,

(17)
(@) <infi[f(z+h)+flez—h)] < ini;eSS%[f(w-l- h)+f(x—h)] = g(@).

4;\B

On the other hand, we have by (16), for he4d, \B,

f(2w:|:2‘f‘h)<f(w)—l-f(f”:':z_nh) n=0,1,2,...,

2 2 ’
i.e.,
flet2="h)—f(2) < 3 [f(@+27"h)—f(x)], = =0,1,2,...
This implies
limsupf(z+2~"h) < f(z),
whence N
limsup}(f(z+27"h)+f(z—27"h)] < f(x).

Consequently (cf. (16)),
(18) inf 3[f(z+h)+flz—h)]< f(x).
a4

Since A has been an arbitrary set of measure zero, (18) implies

(19) g9(®) = iJJAfeSS%[f(w-I- h)+f(x— k)] < f(x).

(17) and (19) yield the equality f(x) = g(x) for every zeA\U, i.e.
almost everywhere in 4.

As an immediate consequence of Theorems 1, 2 and 4 we obtain

THEOREM 5. If f: A — R is almost convex, then there exists a unique
convex function g: A4 — R such that (15) holds.
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Proof. We define ¢ by (14). In virtue of Theorem 4 relation (15)

holds and, consequently,

infess [g(o-+h)+g(0—H)] = infess}[f(@+h)+Flo—H)] = g(a).

It follows from (15) that ¢ is almost convex. Hence, by Theorem 2,

it is convex. Uniqueness results from the corollary to Theorem 1.
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