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1. Introduction. We consider two gencralizations of the queueing
system GI/G /1. They are duc to Finch and Yeo (see [5] and [11], respec-
tively). The special structure of these single-server systems comes
out only if the n-th customer finds the systems vacant. Applying the
methods and results from [10], we shall find some important relations
between both systems. They make it possible to reduce Yeo’s model
to Finch’s model, although, on the other hand, Finch’s model is a special
case of Yeo’s model. That is why the known results of both these models
are very similar (see the results in [2] and [5] in comparison with [11]
or the results in [9] compared to [6]). Therefore, it is not necessary
to consider both models separately but, for many purposes, we can
confine our attention to Finch’s model.

One of the most important results of this paper is that the station-
ary waiting time distribution of Yeo’s model can be represented by
a convolution of the stationary waiting time distribution W of Lin-
dley’s model GI/G/1 and another distribution @, provided that we
consider only the conditional distribution of the strictly positive waiting
time. For @, we give an integral equation.

We compare not only the waiting time distributions of both mod-
els but also the idle times, the queue lengths and the busy periods
of these models.

In particular, considering Lindley’s model as a special case of
Yeo’s model, we obtain some new interesting results about the factors
of the well-known factorization (1.7) (see theorem 4.2).

Let us consider the sequences {X;}, 1 =1,2,..., and {4}, j =
0,1,..., of mutually independent, identically distributed random
variables (r.v.) with common distribution functions (d.f.) K(z) and
D(x), respectively. Let us suppose that {X,;} and {4,} are independent.
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Further, we consider the sequence of r.v.’s

w, ,+X, ifw, , +X,>0, 0w, >0,
(1.1) @, =0, 1w, =10, it 0,>0, w, , =0,

0 otherwise,

n =1,2,... Yeo [11] states without proof that, for [Ed,/ < o and
—oo < EX; < 0, a stationary d.f. W(x) = lim P{w, <z} exists (})

n—00

and that W (z) is the solution of the following integral equation:

Kx W (@) +(D(x) —K (@)W (0), >0,

1.2 W(z) =
(1.2) () 0, < 0.

If, for instance, D(x) = K (x), then we obtain from (1.2) and (1.1)
Lindley’s well-known model (see [8]).

We now study the following queueing system. Let ¢, denote the
moment of arrival after ¢, = 0 of the n-th customer at the single server.
The interarrival times a; =¢,—t,_,, ¢ = 1,2, ..., are mutually inde-
pendent, identically distributed with the d.f. 4 (x). To every customer
there correspond two service times g, and /§n with d.f.’s B(x) and ﬁ(w),
respectively. If the n-th customer finds the system vacant, then his
service time 1is ,3~n, otherwise §,,. If X, =§,,_;—a, and ¢, = f}nq —d,,
then w,, is the waiting time of the n-th customer. If, for instance, B(x)
= B(x), we obtain the model GI/G/1. )

Yeo [11] gives the characteristic function (c.f.) of W () if the arrivals
of the customers form a Poisson process or if 4 (x) is an Erlang distri-

bution. Further, if the c.f. of A(xz) or the c.f.’s of both B(z) and B(x)

are rational, then the c.f. of W(ac) was obtained first by Haeske in [6].

Yeo’s model is immediately connected with Finch’s model which
was studied first in [5]. Its special feature, too, comes out only if the
n-th customer finds the system vaeant; then he is not served immediately
but only after a random delay y, (warming up time). Let w, denote the
waiting time of the n-th customer which is defined by

w, +X, ifw, +X,>0,
Vn it w, ,+X, <0,

’

(13) w(l) = %oy w, =

() We shall generalize this result in theorem 2.1.
(3) The convolution of the functions F, and F, is defined by

FixFy(x) = [ Fy(@w—y)dF,(y).

— 0
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n =1,2,..., where y,, 7, ..., is a sequence of non-negative, mutually
independent and identically distributed r.v.’s. Let us suppose that {y;}
and {X,} are independent. We now give some results from [10], which
we shall need later.

We say W' () is stationary if, for P{w, <z} = W (), the r.v.'s
Wy, Wy, ... are identically distributed with the common d.f. W'(z). In
this case, however, the limit distribution of {w,}, n = 0,1, ..., does not
necessarily exist for arbitrary W,(z) = P{w(; < x} (see remark 2.1). This
is an effect which does not appear in Lindley’s model.

If we put 7; = min{k: w,_,+X, <0, %> 1}, then we have

LEMMA 1.1. A stationary d.f. W' (x) exists if and only if Er, < oo.

(a) For Ey,< oo and —oco < EX, <0, we have Ev, < co. For Ey,
= oo and —o0o < EX; <0 or 0 < EX, < o0, we have Br; = oo,

(b) The stationary d.f. W'(x) is the unique d.f. which solves the integral
equation
K+«W'(z)—(1—C(2)) KW' (0), x>0,

(1.4) Wiz) =
0, x<<0.

(¢) The d.f. W'(z) = lim P{w, <}, which is independent of w,,
exists if and only if e
(15) lim P{w;L—l +‘Xn < 0} = ﬂ > 0.

Nn—>o0

In this case we obtain p = 1/Ev;. If Er; < oo, then the following
conditions are sufficient for (1.5): X, mon-lattice and K (x) <1 for every
x<< 0 or C(x) > 0 for every x> 0.

LEMMA 1.2. Let us assume that the stationary d.f. W' (x) exists. Put-
ting 8; = X;+X,+...+X; and ¥y(z) = C(x), ¥,(@) =P{8;+y,> 0,
i =1,2,...,n; 8, + 7 < x}, Wi(x) admits the representation

(1.6) W (2) = (1/E;) D) ¥i(a).

1=0

For Br; = oo, we have W' (z) =0 in (1.6).

In [2], the c.f. of W'(z) is found if A(z) is an Erlang distribution.
Rossberg [9] studied the c.f. of W' () if 4 (x) or both B(z) and C(z) have
rational e¢.f.’s. Further, a general solution for W'(x) was given in [7]
if (1—-0)/(1—K) is of bounded variation.

Let ¢4(z) be the d.f. concentrated at the origin. Then the d.f. K (z)
can be represented by the well-known factorization

(1.7) (eo—K) = (g— U) *(e,— H),

4 — Zastosow. Matem. 13.4
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where U(x) and H(xz) are distributions concentrated on (— oo, 0] and
(0, o0), respectively (cf. [4], XII, section 3). In particular, in the model
GI1/G/1, U is the d.f. of the negative idle time.

Further, results from [10] are contained in the following lemma:

LeMMA 1.3. Suppose the stationary d.f. W' (x) ewists. If W (x) is the
stationary d.f. in Lindley’s model GI |G |1, then the d.f. W' (x) has the repre-
sentation

(1.8) W (z) = WG(z), —oo<a< oo,

where G (x) is the d.f. of a non-negative r.v. and the unique d.f. which is so-
lution of the integral equation

G*U(z)—(n—C(x))d, x>0,

(1.9) G(z) _‘
0, 2<0, =1 6 =G*U(0).

The solution of (1.9) can be represented by
(110)  G(z) = 6(0(w)—|—(2 Ui‘)*o(z)), I=(0,a], >0.
=1

8 is uniquely determined by G(oo) = 1. If the stationary d.f. W' does
not exist, then the function (1.10) is also the solution of (1.9) for arbitrary o
for a certain n (0 < n<1). For U(0)<<1, we have

n :P{min{oa‘SnSza' S+ e < } (0).

2. The waiting time distributions. In this section we study the rela-
tions between the waiting times in Yeo’s and in Finch’s models. Clearly,
the model of Yeo is a generalization of Finch’s model. In fact, for 4,

= Bu_1—a, and B, = B,+ V., We have w, = w, for w, > 0 and y, = w,
for w, = 0. As the following considerations show, we can also reduce
Yeo’s model to Finch’s model if we do not consider the sequence {w,}
but a random subsequence {w, 3= {w,} of the sequence {w,}. In our
case we obtain {w,} if we cancel "those elements of {wn} for which w, = 0.
Therefore, we 1nvestlgate k, with w, = 0, w, = 0, ,wkl , =0, wk >0

and the index 7, with w, _, = 0, wk>0 LW . >0, w . =0.
1~ k1+11—1 kl—l-'rl

Continuing this construction, we obtain the sequences {7;},1 = 1, 2, ...
and {k;},j =1, 2, ..., where {r;} and {k;} are sequences of mutually inde-
pendent and identically distributed r.v.’s, respectively. Moreover, both
sequences are mutually independent.

Putting T, =0, T; = 1, +1,4...+7; and K, =0, K; =k, +k,+
+...+k;, we can write

(2.1) w[,ﬂ B erlep =0 Lo Tin—1, 6 =0,1,2,
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We call the sequence {w,} the model imbedded in {w,}. If D{0)< 1,
then we have from (1.1) (by induction) a geometric distribution for k,,
ie. P{k, =4} =(1—p)p" ', i =1,2,..., where p =P{5, <0} = D(0).
From (1.1) and (2.1) we conclude that

wy_+X, if w, +X,> 0,

2.2 wy = By, Wy = ,
(2.2) 0 0 5, it w,_, +X, < 0,
n=1,2,..., where {5,,) is a random subsequence of the sequence {6,}
with the d.f.

D(x)—D(0)

(2.3) D, (x) =P{s, <w/b,> 0} = D)< 1, z>0.

1—-D(0) ’
THEOREM 2.1. Suppose 0 < D(0) < 1.
(a) The sequence of the events {w, = 0}, n = 0,1, ..., is not periodic.

For —oo < EX; < 0 and Edf < oo (?), the sequence {w, = 0}, n = 0,1, ...,
is positive persistent with 1im P{w, = 0} = a > 0, where a is independent

n—>00
of wy. For —oo < EX,< 0 and Edf = oo or BX, = 0, the sequence {,
=0}, n =0,1,..., is null-persistent with a = 0. For 0 < EX, < oo,
the sequence {w, = 0}, n = 0,1, ..., is transient with a = 0.

(b) For o> 0, the stationary d.f. W(a:) = lim P{w, <z} exists,
N—>00

is independent of w, and is the unique d.f. which is a solution of equa-
tion (1.2). Further, W (x) can be represented by

(2.4) W(a) = agy(z)+ (1 — o)W (@),

where W' (x) is the stationary d.f. of the imbedded model {w,} and a admits
the representation a = B/[f+1—D(0)], where g = K +«W'(0).
(¢) If a =0, then lim P{w,<x} =0 for all x.

711—>r00

Remark 2.1. Clearly, if D(0) = 1, then we obtain from (1.1) W (x)
= go(x). If D(0) =0, then P{k; = 1} = 0. The following very simple
example proves that theorem 2.1 is not true in this case:

Let us consider the sequence {X,} with

¥ 1 with probability p,
"l =1 with probability ¢, p+q = 1.

(3) As usually, we put
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Let EX, =p—¢< 0 and dy¢{1,3,5,...} with Ed,< oco. Then it
is easily verified that w,,e{0,2,4,...} and W,,,,¢{1,3,5,...}, n =0,
1,... Therefore, the sequence W,(z) =P{w,<a}, n =0,1,..., does
not converge. In our example, the limit d.f. W(az) does not exist. There
exists, however, the stationary d.f. W(:v), which is defined by (2.4). Using
the sufficient conditions in lemma 1.1, part (c¢), we see that theorem 2.1
is also true for D(0) = 0.

Proof of theorem 2.1. (a) Suppose w, =0. Then {w, = 0},
n=20,1,...,is a sequence of recurrent events in the sense of Feller [3],
XII, section 4. We denote by 7, the distance between the first and the
second zeros of the sequence {w,}. Since P{z, =1} = D(0) > 0, 7, is not
periodic. Therefore, we have

(2.5) lim P{w, = 0} = 1/E7, = 2> 0.
n—o0o

If w, > 0, then 7, = 7; +1. Otherwise, we have 7, = 1. Hence we
find

Bty = P{z, = 1}+ D iP{z, = ifs,> 1}P {7, > 1}
=2

and
P{z, =i/t; > 1} =P{r; =i—1}.

Thus we obtain
(2.6) E7, = (1—D(0))Er;+1

in the sense that if one hand-side exists, so does the other. By the
definitions of the sequences {r;} and {w;}, i =1,2,..., we get 7, =
= min{k: w,_;+X; <0,k > 1}. If Er; < oo, then from (2.5) and (2.6)
we have a > 0. Analogously, from Ez; = co we have a = 0. Using lem-
ma 1.1, part (a), the proof of (a) is complete.

(b) Suppose w, = 0. We now transform the last term in the equation

A

(2.7) W, (@) = W, (0)eo(w) + P {iv, < @, b, > 0}.

Applying the conditions {w;_; =0,;>0,w,;>0,j =i+1,i+2,
vy}, ¢ =1,2,...,n—1, and {w,_, =0, §, > 0}, we obtain

n
P, <, ,> 0} = M P{0< 0, <a,t;>0,f =i,i+1,...,n—1,
i=1

’LZ’,-_I = O, (31 > O}P{II’?}‘L—I = 0, 67’ > 0}.
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Putting §, = X, +X,+...+X,, » =1,2,..., we have from (1.1)

(2.8) P{w, <z, w,> 0}
n—1
- (D+(w)—|—ZP{6i+S,-—S,-> 0,j =i+1,i+2,...,n—1,
i=1
0< 6;+8,— 8 <a6;> 0} P{b_, =0, 8> 0}.

As P{w,_ , =0,06,>0} =P{w, , =0}{L—D(0)), (2.5) and (2.6)
vield
(2.9) lim P{w, , =0,d,> 0} = (1/E7) (1—1/Ez,)

Obviously, §;— 8; has the same d.f. as 8;_;. If n—>oco in (2.8), We
have from (2.9) and lemma 3.2 in [10] (cf. [4], XI, (1.8))

(2.10) lim P{w, < z, w, > 0}

N—>00
0o

= (1—1/E%,) (1/E7)) 2 = (L—W(0))W (=),

where Yy(x) = D, (z) and Y,(r) = P{50+SJ‘ >0, j=1,2,...,n—1,
0< 6p+8, <2}, » =1,2,... (cf. lemma 1.2). Lemma 1.2 tells us that
Wi(z) is a d.f. As lim W,(0) = a> 0, (2.7) and (2.9) hold, we infer

M—>00

that Wn( x) tends to a limit distribution W( ), and thus (2.4) is proved.
(2.6) yields the representation a = B{f-+1—D(0))"

The limit (2.9) and a are independent of w,. Thercfore, it is easily
verified that (2.4) is true also for any w, (cf. [10], proof of theorem 3.2).

A very simple consideration shows that W, (z) is defined recursively by
W) = W, *K(2)+(C(@)— K (@))W,_,(0), &>=0,n=1,2,...

Hence ﬁ'( x) is the solution of the integral equation (1.2).

The solution of (1.2) is unique. In fact, let W (z) be another d.f. which
is the solution of (1.2). Choose P {w, < x} = W (z). From W () = W(w),
n=1,2,..., if n—>oo, it follows that W( x) = W( x) as W( ) is inde-
pendent of w, and, therefore, of P{w,< x}.

(¢) If a = 0, then we obtain, using D(0) < L and = 1/Er;, E1, = co.
Applying lemma 1.2 to (2.10), we get W'(2) = 0 and hence, by (2.7),
W () = 0. The proof is complete.

As simplification, assume in the next scctions that a stationary d.f.
denotes the same as the limit distribution. Because of lemma 1.3 and
(2.4) we are now in a position to give the following result:
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THEOREM 2.2. If a stationary d.f. of the sequence {w,} exists, then it
can be represented by

(2.11) W(z) = aeo(@)+(1—a)G*xW(z), —oco<z< 00,

in which W (x) is the stationary d.f. in Lindley’s model and G (x) is a d.f.

of a non-negative r.v. For G(x) we have (1.8) and (1.9) with

_ D(z)—D(0)
1—-D(0) '’

Remark 2.2. A particular case of (2.11) was proved first by Haeske

[6]if B(x) has a rational c¢.f. and é(x) is a mixture of negative exponential
d.f.’s. Although equation (2.4) is contained also in [6], no relation between
the d.f. W' (z) and the model {w,} is given. But this relation is a fundamental
idea of the present paper.

3. The distribution of the idle time. It was shown in [10] that the
integral equation (1.4) can be represented for all = by

(31)  BU(2)+W'(z) = KExW'( 7)f, —oco<w< oo,

where f = K*W'(0),and U’ (x)is a d.f., which is concentrated on ( — oo, 0].
In the queue, U'(z) is the d.f. of the negative idle time. We now study
the d.f. of the idle time in the model {w,}.

If W (2) exists; (1.2) yields W (z) + W (z) = K *W () + (D(2) — K ())a,
—co< << o0, W(—0)<a, W(—o0) =0 and W(x)—O for > 0.
W(x) is non-decreasing on (—oo,0]; in fact, W x) —&y(x)a is non-
-negative and non-decreasing, and hence K*(W ) —&o() a) i1s also non-
-decreasing. Clearly, I}(w) with (}( = (Lla)W (x) + &4(x), —oo < < 00,
1s a d.f. Thus we get

(32)  a(U(@@) —eo(@)+W(a) = K*W (@) + (D(2) — K (2))a,
—oco << xr<< o0.

Suppose w, has already the d.f. W(m). Define two sequences of r.v.’s

by
o, iftw, , =0,

X, if @, >0,
2, =min{0, w,+Y,,,}, n»=1,2,..

Y, =

Applying (1.1), we obtain

~ , e
w71—1+1n - wn_*_zn—n

(3.3) ) )
w, =max{0,w, ,+Y,}.
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We say that the queuing system has an ¢dle time & at the moment
>1if w, ,+Y,<0. Then the negatwe length of the idle time is z,_,
=w, +Y,<0. Obvmml), we have w,_,+Y, < 0 if and only if w, = 0.
It follows for x < 0 that
0)P{—9<x} =P{w, = 0}P{e,_, < x/w, =0}
= P{wn I+Yn\ x}
=P{w,_ ,+X, <z, w,_ ;> 0}+
‘l‘P{wn—l + ‘Sn\ x/wn—l - O}P{?’bn-l = 0}
Therefore, we obtain

0)P{—9<a} = (K+W(x)—K(@)W(0)+D(@)W(0), x<0,

and, comparing with (3.2),

P{—d<x} = Ulx).

We now compare U with the d.f. U’ of the imbedded model. By (3.2)
we have
= (1/a) (W —ago)* (K —&)+D  for all «.

By (2.6) we have

1— 1—-D(0 , A
¢ ( ), g =1/Et;, a = 1/Ez,.

a B
Using W = agy+(1—a)W' (see (2.4)), we get
~ 1—-D(0 ,
U= ——ﬂ—u W (K —¢,)+ D.

On the other hand, we have from (3.1)
— (L)W' (K — &)+ D,
Comparing both equations, we finally obtain
U(@) = D(x)+(1—D(0) U'(2), 2<0.

We collect all these results in the following theorem: .
THEOREM 3.1. The d.f. U(x), which is determined by (3.2), is the d.f.
of the negative idle time in {w,}. For U we have the relation
(3.4) Uz) = D(#)+(1—D(0)U'(z), =<0,

where U’ is the d.f. of the negative idle time in the imbedded model. U’ is
determined by (3.1).



474 G. Siegel

Remark 3.1. Substituting (2.4) into (3.2), we have
(3.5) nU @)+ W (x) = W*K(@) +3D(®), —oco<z< oo,

where 7 = W(O)/[1~W(O)]. An analogous equation was discussed also

by Haeske [6]. In this paper, however, U has no relation with the model
(cf. remark 2.2).

4. Special cases. In this section we assume that a stationary d.f.
W (z) exists. We shall investigate some special cases for G(z) in (2.11).
First, we compare G (x) with D(x). In [10] we derived

LEMMA 4.1. If G(x) or C(x) is a negative exponential distribution, then
we have G(x) = C(x). Conversely, if G(z) =C(x) and 0 < G@*xU(0)< 1
then G(x) is a negative exponential distribution.

Using theorem 2.2 and lemma 4.1, the following result is readily
seen:

COROLLARY 4.1. Assume that D(0) < 1. If G(x) 1s a negative exponential
distribution or D(x) =1 —ce %, 2 >0, d> 0, 0 < e¢<1, then we have

(4.1) G@) =D, (), «=0.

Conversely, from (4.1) and 0 << GxU(0) <1 it follows that G(x) is
a mnegative exponential distribution.

We now consider the d.f.’s U and H in (1.7).
THEOREM 4.1. The d.f.’s H and U admit the representations

(4.2) H(z) =1—-K@O)M,*K, (I), I=(0,x], =0,

where M, (I) = > U™(I) for bounded intervals I, and

(4.3) Uw) = KO M,*K_(z), <0,
where M, = E‘Hi*. H() and U(0) admit the formulas
=0
(4.4) H(co) = (1—K(0))M,*K, (0, co)
and
(4.5) U(0) = K(0)M,*K_(0).
Proof (1.7) ylelds H(z) = H*U(x)—(U(0)—K(z)), > 0. Using
K(z) = K(0)+ (1—K(0))K, (x), 2> 0, we have
H@) 1 L 1-K(0) (U(O)—E(0) N
Hoo) ~ H(w) 7 (o) ( 1-K(0) K“w))’ v=0
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If we put H(x)/H (o) = G(x), then we get (1.9) with

_ U(0)—K(0)
- 1—K(0)

I, =C and

(1.10) yields (4.2). Applying (1.7) to K(z) = P{—X, <z}, we see
from (4.2) that (4.3) is true. We obtain (4.4) and (4.5) if #—o0 in (4.2)
and # = 0 in (4.3). The proof is complete.

Remark 4.1. For z < 0, relation (4.3) is equivalent (cf. [4], XII,
scetion 3) with the integral equation

U+¥ =K+xVP+e, ¥ =)H™
0

An analogous formula to (4.2) is given in [1], p. 165. In this case,
Borovkov uses this relation for estimating H.

(4.2) and (4.3) are very interesting. In particular, they show that H
is uniquely determined by U and K, but for the constant factor 1 — K (0).
Hence, by (1.7), K_ is also uniquely determined by U and K. Analo-
gously, U and K, are uniquely determined from H and K_.

THEOREM 4.2. Assume that K (x) is given. Then
(4.6) C(x) = K ()
18 necessary and sufficient for
(4.7) H(o0)G(x) = H (x).

Proof. (a) Let us assume that (4.6) is true. Comparing (4.2) with
(1.10), we obtain c¢G(r) = H(x), where the constant ¢ = H(o0) as G is
a distribution function without defect.

(b) Let us assume that (4.7) is true. Part (2) shows that this is truec
for C(z) = K, (z). We have to prove that under (4.7) C is uniquely deter-
mined by K. In fact, U and H are uniquely given by K (sce (1.7)). There-
fore, under (4.7), G is 2lso determined uniquely. Furthermore, from (1.9)
we see that C is uniquely determined by G and U. The proof is complete.

We now apply theorem 4.2 to Yeo’s model. In this case we start
from (2.11).

COROLLARY 4.2. Let us assume that K(x) is given. Then
(4.8) K, (z) =D, (x)
s necessary and sufficient for (4.7). If the stationary d.f s W and W exist
and (4.8) s true, then
W(w)—W(O) _ W(x)—W(0)

4.9 = = 3
49 1—T(0) 1—W(0)

x>0,
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In this case we obtain W(a") = W(x) if and only if D(0) = K (0).
Proof. We obtain the first part from thcorem 4.2. As is well known,
W (x)/W(0) is the renewal function of H (x) (cf. [4], XII, section 3, (3.10)).
Therefore, we have W(z) = W(0)ey(x)+H*W(x), v > 0. From (4.7) and
H(oo0) =1—W(0) it now follows that
(4.10) W(z) = W(0)eo(2x)+ (1 —W(0))GxW(zx), x>0.
Comparing (2.11) and (4.10), we get (4.9). Since
W(0) = B(L—D(0)+p4)™" and  W(0) = p(L—EK(0)+5)7,
(cf. theorem 2.1, part (b)), the proof is complete.
We now investigate the d.f. G(z) for
e, x<0,
U(x) =
1, x>0, 1>0.

In particular, we have this U(x) if the input of the queueing
system is a Poisson process. Since V(z) =1 — U(—« —0) has the renewal
function

Z V*x) = dx+1, x>0,
0
we obtain from (1.10) (cf. [10], scction 4)

G(@) = 6(C(2)+4 [ (1—Cy)ay),

where 6 = (1+4m,)"" and m, = [ (L—C(y))dy.
0

5. The queue length. Suppose the stationary d.f. W(x) exists. The
queue length Q(¢) is defined by the number of customers in the system
at the moment {. Let customers arrive at the cpochs 0 =, <t, <t < ...,
let s, << $; < 8, < ... be the instants in which the service of the customers
begins, and 7y, 7, 75, ... the instants in which the customers leave the
system.

We introduce the following notation:

AQn = Q(tn_o)7 FQn = Q(rn—i“O) and Qn = Q(sn+0)
It was proved by Finch [5] for {w,} that
{FQn> k} = {w;"l-ﬂn?/ an+l+an+2+"'+an+k}7 k=1,2,..,

51) ,
( ) {EQn = 0} = {wn+ﬁn< an+1}7
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and

(3.2) limP{¥Q, =&k} = hmP{AQn =k =g, k=0,1,2,...

n—o00

From (5.1) it is easily verified that
(5.3) f(Ak* A®* () d(BxW' (@), Kk =0,1....

Analogously to (5.1) and (5.2), we have formulas for the queue length
of the model {w,}. Using (2.4) and (5.3), a very simple manipulation shows
that

(5.4) ‘g = af (Ak* A(k+l)*(a7))dé(x)+(1-a)Aq;c7 k=0,1,..,

where -Iq, arc the stationary probabilities of @, in {w,}.

The relation between the stationary probabilities of @, in {w,} and
the imbedded model {w,} is simpler. Let {¢,} and {g;} be the stationary
probabilities of @, in {#,} and in the imbedded model {w,}, respectively.
We can write (cf. (5.1))

{Qn > k} = {w; 2 an+1 + Apyo + o + an+k-—1}7
{Qn = 1} = {w;z< an+1}‘
It follows that

(5.6) g, = f (A®=D% () — A" (2))dW' (), k> 1.

By (5.5) we get, applying (2.4),

THEOREM 5.1. The stationary probabilities {q,} and {g;}, ¥ =1, 2, ...,
of the queue length Q,, in {w,} and in the imbedded model {w,}, respectively,
admit the relations

qu=(l—a)q;c, k=2’37-'-7
(5.7) R , -
= (l—a)g+a a=W0).

6. The busy period. Let us assume that w, = 0. We define the first
busy period in the imbedded model {w,} by

@;. = ﬂk1+1+ﬂkl+2+"’+ﬂk1+ri
and the first busy period in {w,} by

6 _ ﬂl-{—ﬂz—l-...-i—ﬂ;l for 7, > 1,
R for 7, = 1.
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Let L(z) and L' (z) be the d.£.’s of ©, and O}, respectively. Note that
7, = 141 for 7, > 1 (cf. proof of theorem 2.1, part (a)). Therefore, from
{t;> 1} = {k, = 1} and from P{ﬁl—oz2 0} = D(0) we get the repre-
sentation

L(z) = N(2) D(0)+P{,+ 6, < z, p—ay > 0}
with N(x) = ]?{/31 < w/ﬂl—aq < 0}.
Obviously,. 0] is independent of k,, ﬂ] and a,. Therefore, it follows
casily

THEOREM 6.1. The d.f.’s L (x) and L’ ) of the busy periods in {w,}
and in the imbedded model {w,}, respectively, admit the formula

(6.1) L(z) = N(2)D(0)+ (B—D(0)N)* L' (x)
with

(6.2) N(x)

D(0) = [ B(2)dA (a).
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STACJONARNY CZAS OCZEKIWANIA I INNE WIELKOSCI
W JEDNOKANALOWYCH SYSTEMACH OBSLUGI MASOWE]
Z OSOBLIWOSCIAMI NA POCZATKU OKRESU OBSLUGI

STRESZCZENIE

Autor bada dwa uogdlnicnia systemu obslugi masowej typu GI/G/1 (patrz
Finch [5] i Yeo [11]). Struktura tych jednokanalowych systemoéw charakteryzuje
si¢ tym, ze obstuga klicntéw przychodzacych w czasie, gdy kanal obstugi jest wolny,
zostaje w specjalny sposéb opodzniona. Autor pokazuje, ze model Yeo mozna zredu-
kowaé do modeclu Fincha, mimo Ze ten ostatni jest szezegdlnym przypadkiem modelu
Yco. Rozklad czasu czekania w modelu Yeo mozna wyrazié poprzez rozklad czasu
czekania w modelu GI/G/1 oraz poprzez rozklad dany w twicrdzeniu 2.2. Przedstawione
s3 takze nowe wyniki dotyczace czynnikow przy znanym sposobie faktoryzacji réznicy
1— K*, gdzie K* jest dowolng funkeja charakterystyczng.



