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0. Introduction. A classical result of Mazurkiewicz and Sierpinski [8]
says that if 4 is an analytic subset of the product of Polish spaces S; xS,,
then the set of points s in S, such that the section of 4 over s is uncountable
is an analytic subset of S;. We find and prove a higher dimensional analogue
of this result in Theorem 2 below. If A4 is a subset of a product S, xS, xS,,
we consider its “two-dimensional” sections over points s in S,. As a criterion
of size, “uncountable” is replaced with “non-reticulate”, a condition suited to
the two-dimensional character of the sections. Recent selection theorems of
Graf and Mauldin [1] facilitate a characterisation of non-reticulate sets
(Theorem 1) and a reasonably straightforward proof of Theorem 2 and its
corollary on the order of values of a measurable function.

Theorem 2 is applied to the problem of determining Borel-isomorphism
types of “Borel-dense” analytic sets, i.e., those with totally imperfect comple-
ment. Earlier work in [10] on Borel-density produced the following result:

(1) If X is Borel-dense and is isomorphic with X x X, then X is a
standard (i.e., absolute Borel) space (Lemma 8). In passing to higher dimen-
sional products, it is natural to replace “Borel-dense” with “Borel-dense of
order 2” (defined below). Theorem 2 then enables us to prove:

(2) If X is Borel-dense of order 2, and X x X is isomorphic with X x X
x X, then X is an analytic space (Theorem 3).

1. Definitions and preliminaries. We assume that the reader is familiar
with the elements of descriptive set theory and the study of Borel spaces. For
the former, we refer one to the texts of Kuratowski [3] and Hoffmann-
Jgrgensen [2]; for the latter, to the monograph of Rao and Bhaskara Rao
[9]. By and large, our usage will follow theirs; see also Shortt [10].

LemMmA 1. Let A, and A, be subsets of the standard spaces S, and S,,
respectively. Suppose that f is a Borel isomorphism of A, onto A,. Assuming
that S,\ A, and S,\ A, are not totally imperfect (i.e., they contain uncountable
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members of #(S,) and H#(S,)), then f extends to an isomorphism of S,
onto S,.

Proof. The lemma is easily derived from the Lavrentiev—Kuratowski
extension theorem in [3], Section 36, VII, and the fact that any two
uncountable standard spaces are Borel-isomorphic.

In what follows, we shall often be working with subsets of the product
of (usually uncountable standard) spaces S, and S,. By a slice of §; xS, we
mean a set of the form A4, x A,, where one of the sets A, is singleton and the
other is non-empty. If 4; = {s}, call 4, x 4, a slice over the point s. If A c S,
x S,, then by a section of A we mean the intersection of A with a slice of S,
x §S,. Likewise, we speak of a section of A over the point s. If S, and S, are
separable spaces, then a thread T of S, xS, is an uncountable standard
subset of §; xS,, each of whose sections contains at most one point;
equivalently, T is the graph of a Borel isomorphism between uncountable
standard subsets of S, and S,. A subset R of S, xS, is reticulate if it is
contained in a countable union of slices of S; xS,.

LEMMA 2. Let E and F be analytic spaces and let A be an analytic subset
of ExF.If A(y)={xeE: (x, y)e A} denotes the section of A over the point
y, then {ye F: A(y) is uncountable) is an analytic subset of F.

Proof. This result is originally due to Mazurkiewicz and Sierpinski [8];
proofs may be found in [3], Section 39, VII, and [2], III.6.1.

LEMMA 3. Let A be an analytic subset of the product of analytic spaces
E and F. If the sections A(x) = {yeF: (x, y)e A} are countable for all x in E,
then there exist analytic subsets B, of E (n=1,2,...) and measurable
mappings f,. B, — F whose (analytic) graphs satisfy:

(1) GUING(f) =D for n#m,

@ 4= U 6.

Proof. This is essentially a result of Lusin [4], p. 243. Proofs may be
found in [2], I11.6.7, and [5].

Let E and F be analytic spaces and let A be an uncountable analytic
subset of E xF. Given xoe E and y,eF, define the sections

Ay (xo) = {YGF3 (xo, y)€ A}
and :

Az (yo) = {x€E: (x, yo)e A}.
LemMA 4. Suppose that, for each xe E and yeF, the sections A,(x) and
A, (y) are countable. Then A is a countable union of analytic graphs of one-
one measurable functions; in particular, A contains a thread.
Proof. Using Lemma 3, we find (for n=1, 2,..)) analytic subsets
B, < E and measurable f,: B,— F so that A =) G(f,). Apply Lemma 3 to
the sets G(f,), using the fact that the “horizontal” sections of G(f,) are
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countable. For m =1, 2, ... there are analytic sets C,, = F and measurable
mappings ¢,,: C, — E such that

G(f) = U Gl

each g, is one-one. Repeating the process for each n yields the lemma.

Continuing in the context of Lemma 4 with E, F, and A c ExF
analytic, and assuming E to be uncountable, we have

LEMMA 5. Suppose that for each xe E the section A, (x) is uncountable.
Then A contains a thread.

Proof. It suffices to consider the case where A is standard, since any
analytic set with uncountably many uncountable sections contains a stan-
dard set with the same property: see [6], Theorem 1. If 4 is standard, the
result folows from Theorem 4.1 of [1].

Say that a separable space X is Borel-dense of order 1 if X is contained
in some standard space S with S\ X totally imperfect, i.e., such that S\ X
contains no uncountable members of #(S). X is Borel-dense of order 2 if X
is contained in some standard space S in such a way that all members of
#A(S xS) contained in (S xS)\(X xX) are reticulate in S xS. A space
Borel-dense of order 2 is easily seen to be Borel-dense of order 1.

LeEMMA 6. If a separable space X can be written as a countable union X
=X, uX,u...of sets X;, each Borel-dense of order 1, then X is Borel-dense
of order 1.

Proof. Embed X in some standard space S. Then there are sets
S,.S,, ... in #A(S) with X;cS; and S§;\X; totally imperfect. S,
= §, US, u... is standard, contains X, and is such that S,\ X < |J(S;\ X)) is
totally imperfect. :

LemMA 7. If a separable space X is Borel-dense of order 1, then so is
any member of #B(X).

Proof. Embed X in a standard space S with S\ X totally imperfect.
Then each 4 in #(X) is A=Bn X for some B in #(S). The fact that
B\ A = S\ X implies the lemma.

LemMma 8. If X, and X, are uncountable separable spaces such that X,
x X, is Borel-dense of order 1, then X, and X, are standard.

This is Proposition 13 of [10].

2. Main results. Very recent work of Graf and Mauldin, combined with
some classical methods (used to prove Lemma 2), enables us to obtain a
characterisation of non-reticulate subsets of a two-dimensional product. The

idea: simply that a thread is never reticulate and that non-reticulate analytic
sets contain a thread.
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THEOREM 1. Let S,, S,, and P be Polish spaces. Suppose that f: P— S,
xS, is a continuous function whose image A = f(P) is an (analytic) subset of
Sy xS8,. Then the following three statements are equivalent:

(I) A contains a thread of S, xS,.

(II) There is a dense-in-itself sequence of points of P on which each of
the component functions f,, f, of f is one-one.

(IIT) A is not reticulate in S, x8S,.

Proof. (I)=(II). Suppose that T < A is a thread of S, xS,. Then fis
continuous from f~!(T) onto T, and the implication follows from [3],
Section 36, V, Corollary 3, applied to each of f; and f,.

(IT) = (III). We assume that E < P is such a countable dense-in-itself set
‘and look for a contradiction. Suppose that A is contained in C, uC, uU...,
where each C; is some slice of S; xS,. Put X;=f"1(Cj for j=1,2,...
Then P= X, UX,uU... expresses P as the union of a sequence of closed
sets. Since each of the components f, f, is one-one on E, it follows that, for
each j, En X; contains at most one point and is therefore a scattered set.
By [3], Section 34, 1V, Corollary 5, E is scattered, a contradiction.

(IIT) = (I). Suppose that A = f(P) is not reticulate in S; xS, and con-
sider the sections A(S,) and A(S,;) of A over points s, €S, and s,€8,.
Define sets

A, = |s;€8,: A(s,) is uncountable},
A, = 5,68, A(s,) is uncountable}.

By Lemma 2, A; and A, are analytic sets. If either 4, or A, is uncountable,
Lemma 5 will imply that 4 contains a thread of §, xS,.

We are left with the case where both A, and A, are countable. By removing
the slices of S; xS, over points in 4; and A,, we may assume that every
section of A is countable. Since A is not reticulate, it is uncountable. Lemma
4 now applies to produce a thread of S; xS, contained in A.

Theorem 1 leads to a two-dimensional extension of the original Mazur-
kiewicz—Sierpinski result. Although these extensions are stated for Polish
spaces, the equivalence of conditions (I) and (III) in Theorem 1 and the
conclusion of Theorem 2 are of course valid for standard measurable spaces.

THEOREM 2. Let S,, Sy, S, be Polish spaces and let B be an analytic
subset of S =8,xS,; xS,. Then the set

A = {seSy: B(s) is not reticulate in S, xS,)

is an analytic subset of S,.

Proof. Since B is analytic, there are a Polish space P and a continuous
function f: P — S mapping P onto B. Let f,, f,, f> be the components of the
function f. Let Z be the (Polish) space of all sequences in P* =P x P x...
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that are dense-in-themselves. (Cf. [3], Section 30, XII, or [2], 1.5.23.) Define
A, to be the set of all s in S, such that there is a dense-in-itself sequence
of points of P on which:

(1) fo is identically equal to s,

(2) each of the functions f;, f> is one-one.
A, is the projection on S, of the following subset of S, xZ:

"38

2
{5, 2): s = folz(k)} n N ﬂl (s, 2): fi(z(k)) # fi(z(D)}.

k=1 i=1k+#

Since this last is a Gg-set, its projection A, is analytic.
Seeing that for each s in S, the set fy '(s) is closed, and hence Polish,
we infer from Theorem 1 that A = A,.

CoROLLARY. Let S, S,, S, be Polish spaces and let f be a measurable
function from S, xS, to Sy. Then

{seSy: f™1(s) is not reticulate in S, xS,}

is an analytic subset of S,.

Proof. Since fis measurable, the graph of fis a Borel subset of S, xS,
x S,; the sets f~!(s) are sections of this graph over points s in S,. Theorem
2 now applies.

As is, Theorem 2 might strike one as a minor footnote to the classical
Mazurkiewicz-Sierpinski Theorem (our Lemma 2). However, it has a most
intriguing application to an open problem in the descriptive theory of sets:
the determination of the isomorphism classes of analytic and co-analytic sets.
Mauldin [6] showed that if 4 is a Borel-dense analytic space, then A4 is not
isomorphic with any of its powers A" (n > 1) or with A" xS, where S is
standard. In [10], Proposition 13, the result was somewhat improved (see
Lemma 8 above). The question of whether 42 could be isomorphic with 43
is still open (P 1328)(").

Approaching the problem “in reverse”, we ask for which Borel-dense
spaces X the product X xX is isomorphic with X x X x X. Under the
assumption that X is Borel-dense of order 2, such an X must be analytic! Of
course, it might be that such spaces are always standard. The assumption of
second-order Borel-density is not very severe in view of the following facts,
proved in [10] and [11]:

(1) If X is Borel-dense of order 1 and is universally measurable, then X
is Borel-dense of order 2. (Such spaces are precisely the complements of
universally null sets in a standard space.)

(2) If X is Borel-dense of order 1, then X has the Blackwell property if
and only if X is Borel-dense of order 2.

(') The answer is affirmative (see Problémes, p. 165).
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THEOREM 3. Let X be a separable space, Borel-dense of order 2. If X
x X is Borel-isomorphic with a product X x A, x A,, where A, and A, are
uncountable separable spaces, then X is analytic.

Proof. Case 1. At least one of the spaces 4,, A, is not standard.
Suppose that X is Borel-dense of order 2 in the uncountable standard space
S (if X is countable, the result is trivial). Suppose also that

g: X xX—-XxA, xA,

is a Borel isomorphism. By Lemma 1, g extends to an isomorphism f of S xS
onto a product of standard spaces S, xS; xS,. Let the components of f be
denoted by fo, fi, f» and consider the set

A= {seSy: fo '(s) is not reticulate in S xS}.

By Theorem 2, this set is analytic; in addition, since X is Borel-dense of
order 2 in S, we have 4 < X. We claim that A = X, which will yield the
desired result. If xe X, then f; !(x) contains the set

Y=f'1(-{x} xA; x A4,),

a member of #(X x X) isomorphic with A, x A,. Now, if f; !(x) is reticulate
in S x8§, so also is Y. In this event, Y may be written as Y=Y, u Y, u..,,
where each Y; is a member of #(X x X) contained in a single slice of X x X.
This means that each Y; is an isomorph of a measurable subset of x. An
application of Lemmas 6 and 7 shows that Y is Borel-dense of order 1. By
Lemma 8, A, xA, must be standard, a contradiction. So f; !(x) is not
reticulate, and 4 = X as claimed.

Case 2. Both of the spaces 4, and A, are standard. Let S be an
uncountable standard space. In this case, X x X and X xS xS are isomor-
phic. Since S and S xS are isomorphic, we have the isomorphisms

XXX >2XxS>2XxSxS>~XxXxS.

Case 1 now applies to show that X is analytic.

I do not know whether the product X x A; x A, in Theorem 3 may be
replaced by the product A4, xA4, xA, of any three uncountable spaces
(P 1329). Higher dimensional versions would depend on the strengthening of
uniformisation theorems such as Lemma S$.
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