Multiplicative linear functionals on some algebras of holomorphic functions with restricted growth

by Marek Jarnicki (Kraków)

Abstract. Let X be a Riemann domain over C^n and let $\delta: X \to (0, 1]$ be a weight function. Denote by $\ell(X, \delta)$ the algebra of all functions f holomorphic on X such that, for some $k = k(f) \ge 0$, the function $\delta^k f$ is bounded. A characterization of the space of all (bounded) multiplicative linear functionals $\xi: \ell(X, \delta) \to C$ will be presented.

1. Introduction. Let us fix an open set $X \subset C^n$. Let $\mathcal{C}(X)$ denote the algebra of all holomorphic functions on X and let S(X) denote the spectrum of $\mathcal{C}(X)$, i.e., the space of all non-zero complex algebra-homomorphisms $\xi \colon \mathcal{C}(X) \to C$. It is well known that S(X) may be represented as the space of all evaluations on the envelope of holomorphy of X (by the evaluation determined by a point x_0 we mean the functional $f \to f(x_0)$). In particular, every functional $\xi \in S(X)$ is bounded in the sense of the Mackey boundedness on $\mathcal{C}(X)$.

This classical result leads to the following general question. Given a subalgebra $A \subset \mathcal{O}(X)$ endowed with an algebra boundedness; what is a characterization of the space of all (bounded) complex homomorphisms $\xi \colon A \to \mathbb{C}$?

From the point of view of the spectral theory (in the sense of [2]) the most interesting case is where A is an algebra $\mathcal{C}(X, \delta)$ of holomorphic δ -tempered functions defined as follows.

Let $\delta \colon X \to (0, +\infty)$ be bounded and lower semi-continuous. For $k \ge 0$, let $\mathcal{C}^{(k)}(X, \delta)$ denote the space of all $f \in \mathcal{C}(X)$ such that the function $\delta^k f$ is bounded. It is seen that

(1)
$$||f||_{K} \leq (\min_{K} \delta)^{-k} ||\delta^{k} f||_{\infty}, \quad K \subset X, \ f \in \mathcal{C}^{(k)}(X, \delta).$$

In particular, the space $\ell^{(k)}(X, \delta)$ endowed with the norm $f \to ||\delta^k f||_{\infty}$ is a Banach space. Put

$$\mathcal{C}(X,\,\delta) = \bigcup_{k\geq 0} \mathcal{C}^{(k)}(X,\,\delta).$$

One may easily check that $\mathcal{C}(X, \delta)$ is a complex algebra (with unit element). Let $S(X, \delta)$ denote the space of all non-zero complex homomorphisms 354 M. Jarnicki

 $\xi: \mathcal{C}(X, \delta) \to C$ and let $S_b(X, \delta)$ be the space of those $\xi \in S(X, \delta)$ which are bounded, that is

for every $k \ge 0$, the restriction of ξ to $\ell^{(k)}(X, \delta)$ is a bounded linear functional of the Banach space $\ell^{(k)}(X, \delta)$ into C.

Note that, in view of (1), $S(X) \subset S_b(X, \delta)$.

Hence it is natural to look for conditions under which $S_b(X, \delta) = S(X)$ or, more generally, $S(X, \delta) = S(X)$ (the last equality means, in particular, that every functional $\xi \in S(X, \delta)$ is bounded).

It is clear that, after evident formal changes, the analogous problems may be posed in the case where X is an arbitrary complex analytic space.

In the question of applications of the spectral theory (cf. [2]), it is natural to reduce the class of admissible functions δ to so-called weight functions.

DEFINITION 1. A function δ : $X \to (0, 1]$ is said to be a weight function on X ($\delta \in W(X)$) if

- (i) $\delta \leq \delta_X = \min \{ \varrho_X, (1+||z||^2)^{-1/2} \}$, where ϱ_X denotes the distance to the boundary of X taken with respect to the Euclidean norm $||z|| = (|z_1|^2 + \ldots + |z_n|^2)^{1/2}, \ z = (z_1, \ldots, z_n) \in \mathbb{C}^n$,
 - (ii) $|\delta(z') \delta(z'')| \le ||z' z''||, z', z'' \in X.$

The following result is known ([2], § 4.6).

THEOREM F. Let X be a domain of holomorphy in C^n and let $\delta \in W(X)$. Then $S_b(X, \delta) = S(X)$ (= the space of evaluations on X).

The proof of Theorem F is based on Waelbroeck's holomorphic functional calculus. Unfortunately, such a method of the proof cannot be adopted to more general cases.

The purpose of this paper is to find an analogue of Theorem F in the case where X is a Riemann domain over C^n . In particular, that will permit us to study the spectra $S(X, \delta)$, $S_b(X, \delta)$ for arbitrary open sets in C^n .

Now let X be a Riemann domain, countable at infinity spread over C^n and let $p = (p_1, \ldots, p_n)$: $X \to C^n$ denote its locally homeomorphic projection into C^n . Denote by $\varrho = \varrho_X$ "the distance function to the boundary of X", that is, for $x \in X$, $\varrho(x) =$ the supremum of all numbers r > 0 such that there exists an open neighbourhood $\hat{B}(x, r)$ of the point x mapped homeomorphically by p onto the Euclidean ball $B(p(x), r) \subset C^n$. Put $\hat{B}(x) = \hat{B}(x, \varrho(x))$.

DEFINITION 2. A function δ : $X \to (0, 1]$ is said to be a weight function on X ($\delta \in W(X)$) if

(2)
$$\delta \leqslant \delta_{\chi} = \min \{ \varrho_{\chi}, (1 + ||p||^2)^{-1/2} \},$$

(3)
$$|\delta(x) - \delta(x')| \le ||p(x) - p(x')||, \quad x \in X, \ x' \in \hat{B}(x).$$

Note that, in view of (3)

(4)
$$\delta(x') \geqslant \frac{1}{2}\delta(x), \quad x \in X, \ x' \in \hat{B}(x, \frac{1}{2}\delta(x))$$

(by (2), the last "ball" is well-defined).

The notion of weight functions on Riemann domains was introduced by the author in [4].

One may easily prove that $\delta_X \in W(X)$. Observe that in the case $X \in \text{top } C^n$, $p = \text{id}_X$ the class of weight functions in the sense of Definition 2 is the same as that in Definition 1.

We shall study the spectra $S(X, \delta)$, $S_b(X, \delta)$ where δ is a fixed weight function on X. We always assume that $\mathcal{O}(X)$ separates points in X. At first we shall show that without loss of generality we may assume that (X, p) is a Stein domain (i.e., X considered as a complex n-dimensional analytic manifold is Stein) and $-\log \delta$ is plurisubharmonic.

Let (\hat{X}, \hat{p}) denote the envelope of holomorphy of (X, p) and let φ : $X \to \hat{X}$ be the natural embedding of X into \hat{X} . Define $\varphi^* \colon \mathcal{O}(\hat{X}) \to \mathcal{O}(X)$ and $\varphi_* \colon S(X) \to S(\hat{X})$ (note that (\hat{X}, \hat{p}) is a Stein domain so $S(\hat{X})$ = the space of evaluations on \hat{X}) by the formulae:

$$\varphi^*(f) = f \circ \varphi, \quad f \in \mathcal{O}(\hat{X}), \quad \varphi_*(\xi) = \xi \circ \varphi^*, \quad \xi \in S(X).$$

It is well known that φ^* is both algebraic and topological isomorphism, hence φ_* is a bijection of S(X) onto $S(\hat{X})$.

THEOREM 1. For every $\delta \in W(X)$ there exists $\hat{\delta} \in W(\hat{X})$ such that:

$$-\log \hat{\delta} \in \mathrm{PSH}(\hat{X}),$$

$$\delta \leqslant \hat{\delta} \circ \varphi,$$

(7) for every
$$k \ge 0$$
, $f \in \mathcal{O}^{(k)}(X, \delta)$: $\hat{f} = (\varphi^*)^{-1}(f) \in \mathcal{O}^{(k)}(\hat{X}, \hat{\delta})$ and $\|\hat{\delta}^k \hat{f}\|_{\infty}$ $\le \|\delta^k f\|_{\infty}$.

The proof will be given in Section 3.

In view of (6), φ^* may be regarded as an algebra homomorphism of $\mathcal{O}(\hat{X}, \hat{\delta})$ into $\mathcal{O}(X, \delta)$ such that, for every $k \ge 0$, φ^* maps $\mathcal{O}^{(k)}(\hat{X}, \hat{\delta})$ into $\mathcal{O}^{(k)}(X, \delta)$ and, viewed as an operator between these spaces has the norm ≤ 1 . In consequence φ_* may be extended to a mapping of $S(X, \delta)$ into $S(\hat{X}, \hat{\delta})$ which maps $S_b(X, \delta)$ into $S_b(\hat{X}, \hat{\delta})$.

In view of (7), φ^* is an isomorphism of $\mathcal{O}(\hat{X}, \hat{\delta})$ onto $\mathcal{O}(X, \delta)$ such that for every $k \geq 0$, φ^* is an isometry of $\mathcal{O}^{(k)}(\hat{X}, \hat{\delta})$ onto $\mathcal{O}^{(k)}(X, \delta)$. In particular, φ_* is a bijection between $S(X, \delta)$ and $S(\hat{X}, \hat{\delta})$ which maps $S_b(X, \delta)$ onto $S_b(\hat{X}, \hat{\delta})$.

Thus we see that the equality $S(X, \delta) = S(X)$ (resp. $S_b(X, \delta) = S(X)$) is equivalent to $S(\hat{X}, \hat{\delta}) = S(\hat{X})$ (resp. $S_b(\hat{X}, \hat{\delta}) = S(\hat{X})$).

M. Jarnicki

Note that φ is injective, because $\mathcal{O}(X)$ separates points. We shall show (see 2.3) that $\mathcal{O}^{(4n)}(\hat{X}, \hat{\delta})$ separates points in \hat{X} . Hence $\mathcal{O}^{(4n)}(X, \delta)$ separates points in X. Thus we have in fact one-to-one correspondence between the considered spectra.

Let $\mu = \mu_X$ denote the measure on X transported by p from the Lebesgue measure λ in C^n , that is, μ is the measure generated by the volume element $(2i)^{-n}d\bar{p}_1 \wedge \ldots \wedge d\bar{p}_n \wedge dp_1 \wedge \ldots \wedge dp_n$.

A Riemann domain (X, p) is said to be *finitely sheeted* if for every $x \in X$ the stalk $p^{-1}(p(x))$ is a finite set.

The main result of the paper is the following

THEOREM 2. Let (X, p) be a Riemann-Stein domain over C^n and let $\delta \in W(X)$ be such that

- (ii) $-\log \delta \in PSH(X)$,
- (ii) there exists $\alpha \geqslant 0$ such that $\delta^a \in L^1(X, \mu)$.

Then $S_h(X, \delta) = S(X)$ (= the space of evaluations on X).

If, moreover, (X, p) is finitely sheeted, then $S(X, \delta) = S(X)$.

The proof will be presented in Section 4.

Observe that if $X \in \text{top } C^n$, $p = \text{id}_X$, then for any $\delta \in W(X)$:

$$\int\limits_X \delta^{2(n+\varepsilon)} d\lambda \leqslant \int\limits_{C^n} (1+||z||^2)^{-(n+\varepsilon)} d\lambda < +\infty, \quad \varepsilon > 0.$$

Hence, by Theorems 1, 2 we get the following important

COROLLARY 1 (a generalization of Theorem F). Let X be an open subset of \mathbb{C}^n such that its envelope of holomorphy is univalent. Then, for every $\delta \in W(X)$, $S(X, \delta) = S(X)$.

An application of Corollary 1 to the theory of holomorphic continuation with restricted growth will be given in Section 5.

- 2. Basic properties of the algebras $\mathcal{O}(X, \delta)$. In this section we present some auxiliary results which will be useful in the sequel.
- **2.1** ([4], Proposition 2). Let (X, p) be a Riemann domain over C^n and let $\delta \in W(X)$. Then

$$\left\|\delta^{k+1}\frac{\partial f}{\partial x_i}\right\|_{\infty} \leqslant \sqrt{n}\,2^{k+1}\left\|\delta^k f\right\|_{\infty}, \quad f \in \mathcal{C}^{(k)}(X,\,\delta), \, j=1,\,\ldots,\,n.$$

2.2 ([4], Theorem 1). Let (X, p) be a Riemann–Stein domain over C^n and let $\delta \in W(X)$ be such that $-\log \delta \in PSH(X)$. Then there exist a set of indices I and families $(n_i)_{i \in I} \subset N$, $(f_i)_{i \in I} \subset \mathcal{C}(X)$ such that

$$-\log \delta = \sup_{i \in I} \left\{ \frac{1}{n_i} \log |f_i| \right\}.$$

2.3 ([4], Theorem 3). Under the assumptions given in 2.2, for every $s \ge 0$ and $x_0 \in X$ there exists $u \in \mathcal{O}(X)$ such that

- (i) $u(x_0) = 1$,
- (ii) u(x) = 0, $x \in p^{-1}(p(x_0))$, $x \neq x_0$ (the remark that the function u constructed in the proof of Theorem 3 in [4] satisfies (ii) is due to P. Pflug see [8]),
 - (iii) $\|\delta^{s+4n}u\|_{\infty} \le c(n, s)\delta^{s-2n}(x_0)$ (c(n, s) depends only on n and s).

In particular, $\mathcal{O}^{(4n)}(X, \delta)$ separates points in X. Hence (in view of Theorem 4 in [4]), $\mathcal{O}(X, \delta)$ is dense in $\mathcal{O}(X)$ in the topology of uniform convergence on compact subsets of X.

THEOREM 3. Under the assumptions of Theorem 2, for every $f_0, f_1, \ldots, f_N \in \mathcal{O}(X, \delta)$, if for some c > 0, $\gamma \ge 0$

$$(|f_1|^2 + \ldots + |f_N|^2)^{1/2} \ge c\delta^{\gamma} |f_0|,$$

then there exist $g_1, ..., g_N \in \mathcal{O}(X, \delta)$ such that

$$g_1f_1+\ldots+g_Nf_N=f_0^k,$$

where $k = \min\{2n+1, 2N-1\}.$

Theorem 3 is a generalization to the case of Riemann domains of the famous "Nullstellensatz" for holomorphic functions with restricted growth. In the case $X \in \text{top } C^n$, $p = \text{id}_X$ this result was proved in [3] (for $f_0 = 1$) and later, basing on the ideas given in [3], in [1] and independently in [7]. In the case of Riemann domains we follow, with formal changes only, the method of the proof given in [7] — all the required estimations for the δ -problem may be deduced from Theorem 2 in [4].

3. Proof of Theorem 1. Let $F_k=\{f\in \mathcal{O}(\hat{X})\colon \|\delta^k(f\circ\varphi)\|_\infty\leqslant 1\},\ k\geqslant 0.$ Put

$$\Phi = \sup_{k>0} \left\{ \sup_{f \in F_k} \left\{ \frac{1}{k} \log |f| \right\} \right\}.$$

Clearly, $\Phi \ge 0$ and $\Phi \circ \varphi \le -\log \delta$. Since $(\varphi^*)^{-1}$ is continuous, for every compact $K \subset \hat{X}$ there exists a compact $L \subset X$ such that

$$||f||_{K} \leq ||f \circ \varphi||_{L}, \quad f \in \mathcal{O}(\hat{X}).$$

Hence $||f||_K \leq (\min_k \delta)^{-k}$, $f \in F_k$, so Φ is locally bounded.

Let us put $\eta = e^{-\Phi^*}$, here Φ^* denotes the upper regularization of Φ . It is seen that $\eta: \hat{X} \to (0, 1], -\log \eta \in \mathrm{PSH}(\hat{X})$ and $\delta \leq \eta \circ \varphi$. In consequence, in view of the definition of Φ , φ^* is an isometry of $\mathcal{O}^{(k)}(\hat{X}, \eta)$ onto $\mathcal{O}^{(k)}(X, \delta)$.

 \hat{X} is a Stein domain, so $-\log \delta_{\hat{X}} \in PSH(\hat{X})$, and hence, by 2.2,

$$-\log \delta_{\hat{X}} = \sup_{i \in I} \left\{ \frac{1}{n_i} \log |f_i| \right\},\,$$

where $(n_i)_{i\in I} \subset N$, $(f_i)_{i\in I} \subset \mathcal{O}(\hat{X})$.

 φ is injective; hence $\varphi(\hat{B}_X(x, r)) = \hat{B}_{\hat{X}}(\varphi(x), r)$. In particular this gives: $\varrho_X \leq \varrho_{\hat{X}} \circ \varphi$, and $\delta_X \leq \delta_{\hat{X}} \circ \varphi$. Hence $f_i \in F_{n_i}$, $i \in I$ and in consequence $\Phi \geq -\log \delta_{\hat{X}}$. Thus $\eta \leq \delta_{\hat{X}}$.

Let $\hat{\delta} = \tilde{\eta} = \inf \{ \eta(y) + \|\hat{p}(x) - \hat{p}(y)\| : y \in \hat{B}_{\hat{X}}(x) \}$ (= the formal convolution of η) – cf. [5], Lemma 2. Obviously, $\hat{\delta} \leq \eta$. It is known that $\hat{\delta} \in W(X)$ ([5], Lemma 2) and $-\log \hat{\delta} \in PSH(\hat{X})$ ([5], Theorem 3).

Thus $\hat{\delta}$ satisfies (5) and (7).

For the proof of (6), note that $\hat{\delta}(\varphi(x)) = \min\{A(x), B(x)\}\$, where

$$A(x) = \inf \{ \eta(\varphi(x')) + ||p(x) - p(x')|| : x' \in \hat{B}_X(x, \delta(x)) \},$$

$$B(x) = \inf \left\{ \eta(y) + \|\hat{p}(\varphi(x)) - \hat{p}(y)\| \colon y \in \hat{B}_{\hat{X}}(\varphi(x)) \setminus \hat{B}_{\hat{X}}(\varphi(x), \delta(x)) \right\}.$$

Clearly $B(x) \ge \delta(x)$ and $A(x) \ge \inf \{\delta(x') + ||p(x) - p(x')|| : x' \in \hat{B}_X(x)\}$, so in view of (3), $A(x) \ge \delta(x)$. Finally $\hat{\delta}(\varphi(x)) \ge \delta(x)$, $x \in X$, which completes the proof of Theorem 1.

Remark. The function $\hat{\delta}$ constructed in the proof of Theorem 1 satisfies the following condition

$$\hat{\delta} = \inf \{ \delta' \in W(\hat{X}) \colon -\log \delta' \in \mathrm{PSH}(\hat{X}), \ \delta \leqslant \delta' \circ \varphi \}.$$

Proof. Let us fix $\delta' \in W(\hat{X})$ such that $-\log \delta' \in \mathrm{PSH}(\hat{X})$ and $\delta \leqslant \delta' \circ \varphi$. By 2.2, $-\log \delta' = \sup_{i \in I} \left\{ \frac{1}{n_i} \log |f_i| \right\}$. Since $\delta^* \leqslant \delta' \circ \varphi$ so $f_i \in F_{n_i}$. Hence $\eta \leqslant \delta'$ and therefore $\hat{\delta} = \tilde{\eta} \leqslant (\delta')^{\sim} = \delta'$ (cf. [5], Lemma 2).

The proof is finished.

4. Proof of Theorem 2. The theorem will be proved by seven lemmas.

Let us fix $\xi \in S(X, \delta)$ and let $I = \ker \xi = \{ f \in \mathcal{O}(X, \delta) : \xi(f) = 0 \}$. For $f = (f_1, ..., f_N) \in I^N$ we shall write $||f|| = (|f_1|^2 + ... + |f_N|^2)^{1/2}$.

LEMMA 1. For every $f \in I^N$, $\gamma \geqslant 0$: $\inf_{x} \{\delta^{-\gamma} ||f||\} = 0$.

Proof. Suppose that $\inf_{X} \{\delta^{-\gamma} ||f||\} > 0$. Then, by Theorem 3 (with $f_0 = 1$), the unit function 1 belongs to the ideal generated by f_1, \ldots, f_N in $\mathcal{O}(X, \delta)$. This is impossible, because $\xi \not\equiv 0$.

LEMMA 2.
$$a = (\xi(p_1), ..., \xi(p_n)) \in p(X)$$
.

Proof. Since $p-a \in I^n$, so by Lemma 1 (with $\gamma = 1$) there exists $x \in X$ such that $||p(x)-a|| < \delta(x)$. In particular, $a \in B(p(x), \delta(x)) \subset p(X)$.

Put $T = p^{-1}(a)$; note that T is a countable set.

LEMMA 3. For every $f \in I^N$: $\inf_{T} ||f|| = 0$.

Proof. Suppose that $||f(x)|| \ge \varepsilon_0 > 0$, $x \in T$. Let $k \ge 0$, $A \ge 1$ be chosen such that $||\delta^k f_j||_{\infty} \le A$, j = 1, ..., N and let $\theta > 0$ be so small that $4^{k+1} n^2 A\theta < \frac{1}{2}\varepsilon_0$. Let $\varphi = \delta^{-(k+1)}(||f|| + ||p-a||)$. By Lemma 1, $\inf \varphi = 0$

Let $E = \{x \in X : ||p(x) - a|| < \theta \delta^{k+1}(x)\}$. Note that $\varphi \ge \theta$ on $X \setminus E$. Hence $\inf ||f|| = 0$.

Let us fix $y \in E$. By definition, there exists $x \in T \cap \hat{B}(y, \theta \delta^{k+1}(y))$. In view of 2.1 and (4), $||f(x) - f(y)|| \le 4^{k+1} n^2 A\theta < \frac{1}{2}\varepsilon_0$. Hence $||f(y)|| > \frac{1}{2}\varepsilon_0$. Thus inf $||f|| \ge \frac{1}{2}\varepsilon_0$. We get the contradiction.

From Lemma 3 we immediately get

LEMMA 4. For every $f_1, f_2 \in \mathcal{O}(X, \delta)$ if $f_1 = f_2$ on T, then $\xi(f_1) = \xi(f_2)$.

Let us denote by \mathscr{F} the set of all sequences $(u_x)_{x\in T}\subset \mathscr{O}(X,\delta)$ such that $u_x(y)=\delta_{xy},\ x,\ y\in T.$ Note that in view of 2.3, $\mathscr{F}\neq\emptyset$.

Lemma 5. The following disjunction holds true: either for every $(u_x)_{x\in T}\in \mathcal{F}$: $\xi(u_x)=0$, $x\in T$ or there exists $x_0\in T$ such that for every $(u_x)_{x\in T}\in \mathcal{F}$: $\xi(u_x)=\delta_{xx_0}$, $x\in T$.

Proof. In view of Lemma 4 it is sufficient to verify those conditions for a fixed sequence $(u_x)_{x\in T}\in \mathcal{F}$.

Let us fix $N \in \mathbb{N}$ and $x_1, \ldots, x_N \in \mathbb{T}$. Observe that $f = (u_{x_1} - \xi(u_{x_1}), \ldots, u_{x_N} - \xi(u_{x_N})) \in I^N$. Hence by Lemma 3

$$\min \left\{ |1 - \xi(u_{x_1})| + |\xi(u_{x_2})| + \ldots + |\xi(u_{x_N})|, \ldots, |\xi(u_{x_1})| + \ldots + |\xi(u_{x_{N-1}})| + \ldots + |\xi(u_{x_N})| + \ldots + |\xi(u_{x_N})| \right\} = 0.$$

Now the thesis of Lemma 5 is clearly seen.

We pass to the proof of Theorem 2 for the case where (X, p) is finitely sheeted.

LEMMA 6. If T is a finite set, then there exists $x_0 \in T$ such that for every $f \in \mathcal{O}(X, \delta)$: $\xi(f) = f(x_0)$.

Proof. Let us fix $(u_x)_{x\in T} \in \mathcal{F}$. For $f \in \mathcal{O}(X, \delta)$ let

$$\tilde{f} = \sum_{x \in T} f(x) u_x.$$

Obviously $\tilde{f} \in \mathcal{O}(X, \delta)$ and $\tilde{f} = f$ on T. Hence by Lemma 4, $\xi(\tilde{f}) = \xi(f)$. Observe that $\xi(\tilde{f}) = \sum_{x \in T} f(x) \xi(u_x)$, so by Lemma 5, either for every $f \in \mathcal{O}(X, \delta)$: $\xi(f) = 0$ which is impossible, or there exists $x_0 \in T$ such that $\xi(f) = f(x_0)$, $f \in \mathcal{O}(X, \delta)$.

The proof is finished.

360 M. Jarnicki

For the proof of the first part of Theorem 2, assume additionally that $\xi \in S_b(X, \delta)$. In view of the method of the proof of Lemma 6, it is clear that we only need to prove the following lemma.

LEMMA 7. For every $f \in \mathcal{O}^{(k)}(X, \delta)$ there exists a sequence $(u_x)_{x \in T} \in \mathcal{F}$ such that $u_x \in \mathcal{O}^{(k+8n+\alpha)}(X, \delta)$, $x \in T$ and

$$\sum_{x \in T} |f(x)| \|\delta^{k+8n+\alpha} u_x\|_{\infty} < +\infty.$$

Proof. Fix $f \in \mathcal{O}^{(k)}(X, \delta)$. By 2.3 there exists $(u_x)_{x \in T} \in \mathscr{F}$ such that $\|\delta^{k+8n+\alpha}u_x\|_{\infty} \le c(n, k+4n+\alpha)\delta^{k+2n+\alpha}(x), \quad x \in T.$

Hence it is sufficient to show that $\sum_{x\in T} \delta^{2n+\alpha}(x) < +\infty$. Observe that in view of (4), $\delta^{2n+\alpha}(x) \leqslant \tau_n^{-1} 2^{2n+\alpha} \int \delta^{\alpha} d\mu$, $x \in X$, where τ_n denotes the volume of the unit ball in C^n and $\Delta_x = \hat{B}(x, \frac{1}{2}\delta(x))$. Note that $\Delta_x \cap \Delta_y = \emptyset$, $x, y \in T$, $x \neq y$. Thus $\sum_{x \in T} \delta^{2n+\alpha}(x) \leqslant \text{const} \cdot \int_X \delta^{\alpha} d\mu < +\infty$.

The proof is completed.

5. Holomorphic continuation of holomorphic functions with restricted growth. Let X be a connected domain of holomorphy in C^n and let $\delta \in W(X)$ be such that $-\log \delta \in \mathrm{PSH}(X)$. Fix a family $F \subset \mathcal{O}(X, \delta)$ and define

$$M = \bigcap_{f \in F} f^{-1}(0).$$

Let R denote the restriction operator $\mathcal{O}(X) \ni f \to f|_{M} \in \mathcal{O}(M)$.

In view of Corollary 1, by using the methods presented in [6], one may easily prove the following result.

THEOREM 4 (cf. [6], Theorem 3). (i) If $R(\mathcal{O}(X, \delta)) = \mathcal{O}(M, \delta)$, then $S(M, \delta) = S(M)$ (= the space of evaluations on M).

(ii) For every algebra-homomorphism $T: \mathcal{O}(M, \delta) \to \mathcal{O}(X, \delta)$ with $R \circ T = \mathrm{id}_{\mathcal{O}(M, \delta)}$ there exists (uniquely determined) holomorphic retraction $\pi: X \to M$ such that, for some c > 0, $\kappa > 0$: $\delta^{\kappa} \leq c\delta \circ \pi$ and

$$T(f) = f \circ \pi, \quad f \in \mathcal{O}(M, \delta).$$

In particular, every such a homomorphism T is bounded.

References

- [1] I. Cnop, Spectral study of holomorphic functions with bounded growth, Ann. Inst. Fourier 22 (2) (1972).
- [2] J.-P. Ferrier, Spectral Theory and Complex Analysis, North-Holland Publishing Company, Amsterdam-London 1973.

- [3] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967).
- [4] M. Jarnicki, Holomorphic functions with bounded growth on Riemann domains over C, Zeszyty Naukowe UJ 20 (1979).
- [5] -, Holomorphic functions with bounded growth on Riemann domains over Cⁿ, Bull. Acad. Polon. Sci. 27 (9) (1979).
- [6] -, Homomorphic continuation of holomorphic functions with bounded growth, Universitatis lagiellonicae Acta Math. 24 (1984).
- [7] J. J. Kelleher, B. A. Taylor, Finitely generated ideals in rings of analytic functions, Math. Ann. 193 (1971).
- [8] P. Pflug, Eine Bemerkung über die Konstruktion von Holomorphiehüllen, Zeszyty Naukowe UJ 23 (1982).

Reçu par la Rédaction le 17. 12. 1981

