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Multiplicative linear functionals on some algebras
of holomorphic functions with restricted growth

by MAREK JarNick1 (Krakow)

Abstract. Let X be a Riemann domain over C” and let 6: X — (0, 1] be a weight function.
Denote by € (X, é) the algebra of all functions f holomorphic on X such that, for some k
=k(f) = 0, the lunction &/ is bounded. A characterization of the space of all (bounded)
multiplicative linear functionals &: ¢ (X, d) » C will be presented.

1. Introduction. Let us fix an open set X = C". Let (¢/(X) denote the
algebra of all holomorphic functions on X and let S(X) denote the spectrum
of (“(X), ie., the space of all nonzero complex algebra-homomorphisms
& ((X)— C. It is well known that S(X) may be represented as the space of
all evaluations on the envelope of holomorphy of X (by the evaluation
determined by a point x, we mean the functional f— f(xg)). In particular,
every functional ¢ €S (X) is bounded in the sense of the Mackey boundedness
on ((X).

This classical result leads to the following general question. Given a
subalgebra A < ¢/(X) endowed with an algebra boundedness; what is a
characterization of the space of all (bounded) complex homomorphisms
& A-C?

From the point of view of the spectral theory (in the sense of [2]) the
most interesting case is where A is an algebra (X, é) of holomorphic §-
tempered functions defined as follows.

Let 6: X —(0, + o) be bounded and lower semi-continuous. For k > 0,
let ™ (X, &) denote the space of all fe (' (X) such that the function §*f is
bounded. It is seen that

(1) Sl < (mind) I8 fll,, K<< X, fe®(X,9).
K

In particular, the space (‘“(X, §) endowed with the norm f—||6*f}j, is a
Banach space. Put
C(X,8) = "X,
k=0

One may easily check that (X, é) is a complex algebra (with unit element).
Let S(X, o) denote the space of all non-zero complex homomorphisms
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&: (X, d)— C and let S,(X, &) be the space of those {eS(X, ) which are
bounded, that is '
for every k = 0, the restriction of & to (" (X, d) is a bounded linear
functional of the Banach space (" (X, J) into C.

Note that, in view of (1), S(X) = S,(X, 9).

Hence it is natural to look for conditions under which S, (X, 8) = S(X)
or, more generally, S(X, 8) = S(X) (the last equality means, in particular,
that every functional £eS(X, é) is bounded).

It is clear that, after evident formal changes, the analogous problems
may be posed in the case where X is an arbitrary complex analytic space.

In the question of applications of the spectral theory (cf. [2]), it is
natural to reduce the class of admissible functions ¢ to so-called wecight
functions.

DeriNimion 1. A function 6: X — (0, 1] is said to be a weight function on
X (beW(X) if '

(i) 6 <8y =min gy, (1 4]zl 2], where ¢y denotes the distance
to the boundary of X taken with respect to the Euclidean norm ||z||
=z + ... +|zdD)' 2 =2y, -0, 2)ECT,

(i) [6(z)—o(z") < |lz'=2"|], ', 2" X.

The following result is known ([2], § 4.6).

THEOREM F. Let X be a domain of holomorphy in C" and let e W (X).
Then S,(X, 6) = S(X) (= the space of evaluations on X).

The proof of Theorem F is based on Waelbroeck’s holomorphic
functional calculus. Unfortunately, such a method of the proof cannot be
adopted to more general cases.

The purpose of this paper is to find an analogue of Theorem F in the
case where X is a Riemann domain over C”. In particular, that will permit us
to study the spectra S(X, 9), S,(X, d) for arbitrary open sets in C".

Now let X be a Riemann domain, countable at infinity spread over C"
and let p =(p,, ..., p,): X — C" denote its locally homeomorphic projection
into C". Denote by ¢ = gy “the distance function to the boundary of X, that
is, for xe X, g(x) = the supremum of all numbers r > 0 such that there
exists an open neighbourhood B(x,r) of the point x mapped
horgeomorphically by p onto the Euclidean ball B(p(x), r) < C". Put B(x)
= B(x, o(x)).

DEeriNITION 2. A function d: X — (0, 1] is said to be a weight function on
X 0eW(X)) if

(2) 3 < 8x = min |gy, (1+]Ipl|®)~ V3,
3) 16(x)=8 (XN < llp(x)—p(x)l, xeX, xeB(x).
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- Note that, in view of (3)
(4) 5(x)>46(x), xeX, xeB(x, $5(x)

(by (2), the last “ball” is well-defined).

The notion of weight functions on Riemann domains was introduced by
the author in [4].

One may easily prove that dye W(X). Observe that in the case
X etopC”, p = idy the class of weight functions in the sense of Definition 2 is
the sadme as that in Definition 1.

We shall study the spectra S(X, §), S,(X, ) where  is a fixed weight
function on X. We always assume that ¢(X) separates points in X.
At first we shall show that without loss of generality we may assume that
(X, p) is a Stein domain (i.e, X considered as a complex n-dimensional
analytic manifold is Stein) and —logé is plurisubharmonic.

. Let (X, p) denote the envelope of holomorphy of (X, p) and let ¢:
X - X be the natural embeddmg of X into X. Define ¢*: 0(X) - 0(X) and
Py S(X)—»S(X) (note that (X, p) is a Stein domain so S(X) = the space
of evaluations on X) by the formulae:

o*()=fop, [feOX), .8 =C09* (CeS(X)

It is well known that ¢* is both algebraic and topological isomorphism,
hence ¢, is a bijection of S(X) onto S(X).

THEOREM 1. For every 8 W(X) there exists §e W(X) such that:

(5) —logde PSH(X),

(6) 6<doo,

(7)  for every k>0, fe®®(X,d): f=(p*) ' (N)eO®™(X, ) and |6*]|
<1041l

The proof will be given in Section 3.

. In view of (6), ¢* may be regarded as an algebra homomorphism of
O(X, §) into O(X, &) such that, for every k >0, ¢* maps O%(X, §) into
O™ (X, ) and, viewed as an operator between these spaces has the norm
< 1. In consequence ¢, may be extended to a mapping of S(X, J) into
S(X, 8) which maps S,,(X d) into S,(X, §).

In view of (7) ¢@* is an isomorphism of (O(f( ) onto O(X, &) such that
for every k > 0, ¢* is an isometry of O (X, 5) onto ¢*¥(X, §). In particular,
(p* is a bijection between S(X, d) and S(X 8) which maps S,(X, d) onto
S,(X, §).

Thus we see that the equahty S(X, 6) S(X) (resp. S,(X, d) = S(X)) is
equivalent to S(X, 8) = S(X) (resp. S, (X, 8) = S(X)).
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Note that ¢ is injective, because ¢/(X) separates points. We shall show
(see 2.3) that ("*" (X, §) separates points in X. Hence (**”(X, §) separates
points in X. Thus we have in fact one-to-one correspondence between the
considered spectra.

Let u = uy denote the measure on X transported by p from the
Lebesgue measure 4 in C”, that is, u is the measure generated by the volume
element (2i))™"dp, A ... Adp, Adp, A ... Adp,.

A Riemann domain (X, p) is said to be finitely sheeted if for every xe X
the stalk p~'(p(x)) is a finite set.

The main result of the paper is the following

THeoreM 2. Let (X, p) be a Riemann-Stein domain over C" and let
oe W(X) be such that

(i) —logde PSH(X),

(ii) there exists o = 0 such that 6*e L} (X, p).

Then S,(X, 8) = S(X) (= the space of evaluations on X).
If, moreover, (X, p) is finitely sheeted, then S(X, ) = S(X).
The proof will be presented in Section 4.

Observe that if XetopC”", p =idy, then for any de W(X):

_[62"'*"«11 < j(l +||z||2)“‘"+°’dl < +4+wo, €£>0.
X o

Henée, by Theorems 1, 2 we get the following important

CoroLLARY 1 (a generalization of Theorem F). Let X be an open subset
of C" such that its envelope of holomorphy is univalent. Then, for every
oe W(X), S(X, d) =S(X).

An application of Corollary 1 to the theory of holomorphic
continuation with restricted growth will be given in Section S.

2. Basic properties of the algebras (/(X, ). In this section we present
some auxiliary results which will be useful in the sequel

2.1 ([4], Proposition 2). Let (X, p) be a Riemann domain over C" and let
e W(X). Then

5h+1 af

0x;

SN2 N8 lle, fEC®(X,6),j=1,...,n.

2.2 ([4], Theorem 1). Let (X, p) be a Riemann—Stein domain over C" and
let 6 € W(X) be such that —logé € PSH(X). Then there exist a set of indices I
and families (n);; < N, (f)iaq = €(X) such that

—logd = sup{llog If,-l}.

iel i
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2.3 ([4], Theorem 3). Under the assumptions given in 2.2, for every s 2> 0
and x,€ X there exists ue (/(X) such that

(1) u(xo) =1,

(i) u(x) =0, xep™*(p(xg)), x # xo (the remark that the function u
constructed in the proof of Theorem 3 in [4] satisfies (ii) is due to P. Pflug
(iii) |I6°**"ull, < c(n, 5)8° 2"(xo) (c(n, s) depends only on n and s).

In particular, 0'*™ (X, &) separates points in X. Hence (in view of Theorem
4 in [4]), O(X, J) is dense in (O(X) in the topology of uniform convergence on
compact subsets of X.

THeorReM 3. Under the assumptions of Theorem 2, for euery foro S1s -on
L INneO(X, d), if for some ¢ >0, y=0

(Al + o +IND2 = 87| ol

then there exist gy, ..., gy (X, 8) such that
gifit+ ... +anfn =15,

where k = min [2n+1, 2N —1}.

Theorem 3 is a generalization to the case of Riemann domains of the
famous “Nullstellensatz™ for holomorphic functions with restricted growth. In
the case XetopC”, p =idy this result was proved in [3] (for f, = 1) and
later, basing on the ideas given in [3], in [1] and independently in [7]. In
the case of Riemann domains we follow, with formal changes only, the
method of the proof given in [7] — all the required estimations for the ¢-
problem may be deduced from Theorem 2 in [4].

3. Proof of Theorem 1. Let F, = {fe O(X): ||0*(foo)ll, <1}, k = 0.
Put

® = sup{sup{%loglfl}}.

k>0 (feFy

Clearly, @ > OAand Pogp < —logd. Since (¢*)"! is continuous, for every
compact K — X there exists a compact L< X such that

Iflk <lfoell, feO(X).

Hence ||f|lx < (mind)~*, feF,, so & is locally bounded.
L

Let us put 7 = e~ %", here ®* denotes the upper regularization of @. It is
seen that n: X —(0, 1], —logne PSH(X) and é < no¢. In consequence, in
view of the definition of @, ¢@* is an isometry of ¥ (X, n) onto 0¥ (X, 8).
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X is a Stein domain, so —logégePSH(X’); and hence, by 2.2,

1
—logdz = SUP%;bg Ifil},

iel i
where ()i <N, ()i = C (j)

¢ is injective; hence @(By(x, r)) = Bz(¢(x), r). In particular this gives:
ox <0z0¢.and 6y <d30¢. Hence feF,, iel and in consequence P
> —logd;. Thus n < d3.

Let 6 =7 =inf (n(»)+]Ip(x)—pPOI: yeBx(x)} (= the formal convolu-
tion of #) — cf. [5], Lemma 2. Obviously, 5 <. It is known that §e W(X)
([5], Lemma 2) and —logdePSH(X) ([5], Theorem 3).

Thus §é satisfies (5) and (7).

For the proof of (6), note that &(¢(x)) = min {4 (x), B(x)}, where
A(x) = inf {n (@ (X)) +Ilp(x)—p(xX)l: x'€Bx(x, 6(x))},
B(x) = inf {n(») +1p(@(x) - pOWN: yeBz(@(x)\Bz(e(x), 6(x)}.

-Clearly B(x) = é6(x) and A(x)>iAnf{é(x’)+||p(x)—p(x’)||: x'€By(x)}, so in
view of (3), A(x) = d(x). Finally é(¢(x)) > é(x), xe X, which completes the
proof of Theorem 1.

Remark. The function & constructed in the proof of Theorem 1 satisfies
the following condition

5 =inf!6'eW(X): —logd'ePSH(X), < 00p).
Proof. Let us fix 8 e W(X) such that —logé'e PSH(X) and 6 < §' 0 ¢.
1
By 2.2, —logéd’ —sup{—loglfl} Since 6* < d'0¢ so fieF,. Hence n <&

iel i

and therefore 8 = 7 < (§)~ =& (cf. [5], Lemma 2).
The proof is finished.

4. Proof of Theorem 2. The theorem will be proved by seven
lemmas.

Let us fix {€S(X, 9) and let I =ker{ = {fe(O(X, 8): E(f)=0). For f
=(fis - S EI” we shall write ||f]| = (/> + ... +I/HY>.

LemMa 1. For every fel, y > 0: mf‘é "||f||‘ = 0.

Proof. Suppose that inf {67 7||f]|} > 0. Then, by Theorem 3 (with f,
X
= 1), the unit function 1 belongs to the ideal generated by fi, ..., fy in
O(X, 6). This is impossible, because ¢ # 0.

Lemma 2. a=(E(py), ..., E(p))ep(X).

Proof. Since p—ael”, so by Lemma 1 (with y = 1) there exists xe X
such that ||p(x)—ad]| < (x). In particular, ae B(p(x), d(x)) = p(X).
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Put T= p~!(a); note that T is a countable set.
LEMMA 3. For every felI¥: inf||f]] = O.
T

Proof. Suppose that ||f(x)]| =&, >0, xeT. Let k >0, A > 1 be chosen
such that [|0*f]lo, < 4,j=1, ..., N and let § > 0 be so small that 4** ! n? 40
<3eo. Let @ =8"**V(|f|l+|lp—all). By Lemma 1, infe =0

X
Let E={xeX: |p(x)—a|l <05**!(x)}. Note that ¢ >0 on X\E.
Hence inf||f]|| = 0.
E

Let us fix ye E. By definition, there exists xe T B(y, 85**!(y)). In view
of 21 and (4), |If (x)=f (VI < 4*1n? A0 < ieo. Hence [|f (y)l] > 1&o. Thus
inf||f]| = $¢,. We get the contradiction.

E

From Lemma 3 we immediately get

LEMMA 4. For every f,,1,€0(X,0) if fy =f, on T, then £(f,) = E(f>).

Let us denote by % the set of all sequences (u,),.; < ¢(X, d) such that
u.(y) =9,,, x, ye T. Note that in view of 2.3, ¥ # Q.

LemMA 5. The following disjunction holds true: either for every
(U)eer€F: E(u) =0, xeT or there exists xo€T such that for every
(ux)xsTe'g;: ‘f(ux) = 51:;0: xeT.

Proof. In view of Lemma 4 it is sufficient to verify those conditions for
a fixed sequence (u,),.y€Z.

Let us fix NeN and x,,...,xyeT. Observe that f=(u, —
—&(ug,), ooy they—E(uy,))eI”. Hence by Lemma 3

min {1 =& (e ) +1E (el + - +IE Wl o5 (S + o +1E (g M+
H1=E gy 1€ e )+ ... +E(ug)l} = 0.

Now the thesis of Lemma 5 is clearly seen.
We pass to the proof of Theorem 2 for the case where (X, p) is finitely
sheeted.

LemMMa 6. If Tis a finite set, then there exists xq€ T such that for every
JeO(X, d): £(f) =1 (xo).
Prool. Let us fix (4,),.r€Z . For feO(X, ) let
f= Z f(x) Uy.
xeT

Obviously fe (X, d) and f=f on T. Hence by Lemma 4, £(f) = &(f).
Observe that ¢(f)= Y f(x)é(u,), so by Lemma 5, either for every

xeT

fe (X, d): {(f) =0 which is impossible, or there exists xoe T such that
¢(f) =S(xo), fEO(X, 9).
The proof is finished.
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For the proof of the first part of Theorem 2, assume additionally that
¢eS,(X, d). In view of the method of the proof of Lemma 6, it is clear that
we only need to prove the following lemma.

LeMMA 7. For every fe O¥ (X, §) there exists a sequence (u,),.;r € F such
that u,e O**8"*0(X §), xe T and

2 If NI * ull, < + 0.

xeT

Proof. Fix fe®™ (X, §). By 2.3 there exists (u,),.r€F such that
fNo*+8r*tay ||, <c(n, k+4n+a)d**2"**(x), xeT.

Hence it is sufficient to show that ) 32"**(x) < + oo. Observe that in view

xeT

of (4), 6*"**(x) < 7, 1 2*"** [ 8"dy, xe X, where 7, denotes the volume of the

-~ AI
unit ball in C" and 4, = B(x, $6(x)). Note that 4, "4, =Q, x, yeT, x # y.
Thus ) 6%"**(x) < const- [ 6*du < + 0.
X

xeT

The proof is completed.

5. Holomorphic continuation of holomorphic functions with restricted
growth. Let X be a connected domain of holomorphy in C* and let 6 e W(X)
be such that —logde PSH(X). Fix a family F < O(X, ) and define

M= f10).

JeF

Let R denote the restriction operator O(X)3f - f|, € O(M).

In view of Corollary 1, by using the methods presented in [6], one may
easily prove the following result.

Tueorem 4 (cf. [6], Theorem 3). (i) If R(O(X, d))=O(M, ), then
S(M, 8) =S(M) (= the space of evaluations on M).

(i) For every algebra-homomorphism T: O(M, 6) —» O(X, 8) with RoT
= idyu,9 there exists (uniquely determined) holomorphic retraction n: X - M
such that, for some ¢ >0, x > 0: 6% < céon and

T(f) =for, feO(M,é).

In particular, every such a homomorphism T is bounded.
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