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“ZERO-TWO” LAW FOR CONSERVATIVE MARKOV OPERATORS

BY

WOIJCIECH BARTOSZEK (WROCLAW)

In [6] Ornstein and Sucheston considered the limit behaviour of
T"(I — T*) and proved the so-called “zero-two™ law for Markov operators T
on L* spaces. Foguel [3] extended and simplified the Ornstein—Sucheston
result. In this note we obtain similar results for certain Markov operators
acting on the more general space C(X) of continuous functions over a
compact Hausdorff space X. We shall appeal to a few facts on conservative
operators as presented in [2] and on quasi-compact operators as presented
in [7]. It is not hard to see that the metrizability assumption in all results
quoted from [2] and [4] is unnecessary.

Let X be a compact Hausdorff space. By a Markov operator we mean a
linear operator

T: C(X)—- C(X)

such that f > 0= Tf >0 and T1 = 1. It is well known (see e.g. [8]) that for
every Markov operator T there exists a unique family of probability Radon
measures P(x,-), xeX, on X such that: (a) for every Borel set A the
mapping x — P(x, A) is Borel measurable, (b) for every feC(X) Tf
= (f(»)P(-, dy). In fact we have P(x, ) = T*¢,(-). By B(X) we denote the
bounded Borel functions on X. Using (b) the Markov operator T can be
canonically extended to an operator T: B(X)— B(X). If T takes B(X) into
C(X) then T is called strong Feller.

LemMma 1. Let T: C(X)— B(X) be a positive linear operator. If Tf is
upper semicontinuous (u.s.c.) for every nonnegative continuous function f then
there exists a family of probability Radon measures P(x, ), xe X, on X such
that (a) and (b) hold.

Proof. It is enough to show that for every Borel set A the mapping
x — T*¢,(A) is Borel measurable. The class of Borel sets for which this holds
contains all closed sets, is closed under taking unions of monotone sequences

and under relative complements. Now the assertion follows from [7],
Chapter 1, Theorem 3.2.
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It should be noted that if X is metrizable then the indicator of every
closed set is the pointwise infimum of a sequence of continuous functions.
Thus in Lemma 1 the assumption of upper semicontinuity can be omitted.

Now let T;, T, be two positive operators on C(X). An essential step in
the proof of the “zero-two” law for Markov operators on L* is the definition
of the lattice theoretic infimum S, = T"** A T* (see [3]). Here by T, A T, we
shall denote the positive linear operator acting from C(X) to B(X) defined
for f 20 by

T, AT, f(x) =inf{Tg(x)+ To(f —9)(x): 0< g <f, geC(X)}.

From Lemma 1 the operator T; A T, can be canonically extended to an
operator from B(X) to B(X). The following “zero-two” law corresponds to
Theorem I in [3]. Its proof is now a slight modification of the proof in [3]
and is omitted.

THEOREM 1. Let T be a Markov operator on C(X) and let k =2 0. If
|T™**—T™|| < 2 for some m >0 then ||T"**—T"| -0 as n— .

In the sequel we shall obtain more complete information on the “zero-
two™ behaviour of iterates for a narrower class of operators. Recall that a
linear operator T: C(X)— C(X) is compact iff the mapping x — T*¢, 1s
norm continuous (see [7], Proposition 5.9). In particular every compact
Markov operator is strong Feller. As in [2] let A; be the family of
nonnegative Ls.c. functions f such that Tf < f and T"f — 0 pointwise. By the
Foguel boundary Fr of T we mean the intersection of all zero-sets {x: f(x)
= 0} for the functions f in Ay. If F; = X we say that T is conservative. Let
Pr(X) denote the set of all T*-invariant probability measures. By the center
My of T we mean the closure of the union of the supports of all measures in
Py (X).

The Markov operator T is said to be quasi-compact if there exists
a sequence R, of compact operators on C(X) such that ||T"—R,|]|-0
(our definition differs slightly from that in [7] and is narrower since the
domain of our operators is C(X)). For a quasi-compact Markov operator T the
condition My = X is equivalent to the conservativeness of T. Indeed, it is
well known that M, = F; for all Markov operators, so we only have to
show that if T is conservative then My = X. From the inequality T1,,.,.

= 1y, it is easy to see that the pointwise limit of T" 1y, exists and, by [5],
Theorem 1, belongs to C(X). Thus if limT"1 My # 1y, then we have
T" 1y, # 1y, On a set of second category for some n. But this is impossible
from the conservativeness of 7. Thus T1 My = 1y, € C(X) and My = X since
My is clopen.

Remark 1. Let P be a stochastic operator (ie. P>0and P*1 =1) on
an L'(m) where m is a probability measure. The stochastic operator P is
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called conservative if P*f <f = P*f =f for feL®(m) (see eg. [1]). Since
L*(m) is isomorphic to C(X) for some compact Hausdorff space X, there
exists a Markov operator P: C(X)— C(X) naturally corresponding to P*. It
is not hard to observe that P is conservative if and only if P is conservative
in the sense of our previous definition. Indeed, let P be a conservative
Markov operator on C(X), and P*f <f. Thus Pf < f(with f the image of f
in C(X)) and by conservativeness of P we have Pf =f so P*f =f. Now
suppose that P is a conservative stochastic operator but P is not. Then, by
[4]. Theorem 1.1, there exists a nonvoid, clopen set U < X such that

Z P'1;(x)<SL<o for some L and every xeX. Thus we get

Z P*"1, < L in L*(m) for some set U (m(U) > 0), but this is impossible
n=0
from conservativeness of T.

The asymptotic behaviour of iterates of quasi-compact operators is
known (see [7], Chapter 6). The following lemma is a topological version of
Theorem 3.7, p. 176, in [7] and its proof is modelled on the proof of the
quoted theorem. It is very important for us that the following lemma holds in
a nonseparable case too (the separability assumption in Theorem 3.7 in [7] is
unnecessary).

LEMMA 2. Let T be a quasi-compact, conservative Markov operator on
C(X). Then there exist a partition of X into clopen sets E, s and probability
measures m, ; with supports E,; (e =1,...,r, =1,...,d,) such that if d

denotes the least common multiple of the d,’s then for every k the operators
r l?
T™** converge to ) Y lg, ,_,®m,, in the norm topology (the second
e=194=1
subscripts taken modulo d,, see Proposition 3.5 of [7]).

Proof. By [7] the iterates T™ norm converge to a projection
dﬂ

= Z Z Ues®my,

e=148=1

where U, ;e B(X) and m, e P(X). Since SU,; = U, (see [7]) and S is a
finite rank (hence strong Feller) operator, U, ;€ C(X). Let E,; = |x: U, ,,(x)
= 1}. By the proof of Theorem 3.7

Ig, , < T‘IEM < ... < h..m ™ lg, , = Slg, ;€ C(X).
By the conservativeness of T and the closedness of E,, we have
E, s = T"IEQ,J = ... = SlE‘,'a,

so E, ; is clopen. In the same way using Tlg, 441y 2 lg, , we can show that
Tlfo.(on) = lEo.a for every 6 =1,...,d,. We shall show that H E,;=X.
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r do

Since the set Xo=X—-J U E,; is clopen and T-invariant, we have
e=10=1

Slx, = lx,- On the other hand

Slxo = (Z Z Uu'(’@mu.é) ]XO =0,
e o
therefore X, = @. Since

r de
Uﬂ'a 2 150.6 and Z Z Ua’o = 1

¢=1 6=1

(see [7]), U,s = lEQ,a and the lemma is proved.

Now for quasi-compact conservative Markov operators we have the
following sharper version of Theorem 1.

THEOREM 2. Let T be a quasi-compact conservative Markov operator on
C(X) and let d = 1. Then there exists a partition of X into two clopen T
invariant sets X, and X, such that T™ converge on C(X,) in the norm
topology and |(T"(I— TH)*e || = 2 for every xeX,.

Proof. Let

J=1l¢: 1 <g<r and d, divides d},

da
X0= U U E0,6 and X2=X\X0

eel =1

Applying Lemma 2 to TIC(XO) we can easily show that T™ converge
d

0 ]
to) Y 1g, ,®mM,, s in the norm topology on C(Xo). Now let xe X,. Thus
eel =1 ’
xeE,; where 1<o<r, o¢J and 1 <0 <d;. From Lemma 2 we get

supp T* e, c E, 54 ;.
Thus

% nd +1)d —_
supp T*™e, nsupp T*"* Vg E,+ny N Eq5+nt ey =9

because 6+nd # 6+(n+1)d (modd,).

Remark 2. The assertion of Theorem 2 holds for every strong Feller
conservative operator because T? is then compact by [7], Theorem 5.10,
p. 35 (the metrizability assumption in Theorem 5.10 causes no loss of gen-
erality since if the restriction to every separable subspace is compact then the
operator is compact). Without any compactness assumption on T™ the
situation is less clear:

Example. Let X = {0, 1, 1/2, 1/3, 1/4, ...}. Define

Tf (x) = f (g (x))
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where ¢g(0) =0 and
1/(n+1), n odd,
1/(n—1), n even.

g(1/n) ={

For this Markov operator the assertion of Theorem 2 does not hold for
d=1.

Remark 3. If T is a quasi-compact Markov operator then (by
Rosenblatt [8], Theorem 6, and from Lemma 2) the iterates converge in the
norm if and only if 1 is unique peripheral eigenvalue of T.

Remark 4. If T is a quasi<compact, conservative Markov operator
on C(X) where X is a compact Hausdorff connected space, then from
Lemma 2 we infer that T" converge in the norm to 1®m where m is a unique
T*-invariant probability measure.

I would like to thank A. Iwanik for many helpful remarks during
preparation of this note.
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