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1. Introduction. For the generalized Rice polynomials

1.1
N . —nya+f+n+1,{;
(@,8) a+n |
HP L, pyv]= " 3 Fs v, =»=0,1,2,...,
a+1,p;
which, when a = g = 0, reduces to the original form ([9], p. 108)
—n, n+1, ;
(1.2) Hn[cypr v] = 3F2 vl
1, »; _
Deshpande and Bhise ([4], p. 170) have proved the generating function
- t  (1—y)
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and F, denotes the Appell function of the second kind defined by ([1],
p. 14)
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In view of the known transformation ([1], p. 25; see also [5], p. 240)
(1.6) Fz[ayﬁvlg’; 7’17’1; z,Y]
—a , , @ Y
= (1—2) Fz[aa?’_ﬁvﬁ;yy?’;—’ ]

z—1" 1—z}’
the first member of formula (1.3) is essentially the same as
(1.7) Foldy0—pyv; 0,0 t, —3(L—y)tl.
Thus if in formula (1.3) we set u = —f, o = —a—pf, and replace ¢,

(1 —v)/2 by —1tand x respectively, we shall at once arrive at its equivalent
form

[;"]n (a—mn,f~n) n
(1.8) Z[_a_ﬂ]nﬂn My, 5, 2]t

= F,[A, —a,v; —a—pB,0;—1,xt].

The generating function (1.8) was proved, a couple of years ago,
by Manocha ([6], p. 432, (7)). It may be of interest to remark that in
a subsequent paper [11] we extended several formulas involving the
generalized Rice polynomials (1.1) to hold for various classes of generalized
hypergeometric polynomials. In particular, we proved the formulas
(see [11], p. 112)

(1.9)

—n, a+t+pf—mn, (¢);

o (A0 (n—a\ [n—a—B\"" [(a)], .
2( " )( » )( n ) (@), °* 7P+ |’

n=0

a—n, (d);
A+1, (a): 1—a; (¢);
—F ‘ t, —mt
and (b): 1—a—p; (d);
—m, —n, (a); —k, 2+mn, (¢);
(L.10) [”3“ 102Fp & | eaF'p vl
I (5); (@);
v —m, (a); —Ek, (c);
=(1=t)*'F ;%233%7 ,

(b); (d);
where (a) is taken to abbreviate the sequence of A parameters
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[(a)], has the interpretation

A

]— I [a:i]n’

j=1
with [a;], defined by (1.4), and similarly for (&), [(b)],, ete. Also Fg[z]
denotes the generalized hypergeometric function, and the notation for
the double hypergeometric functions, occurring on the right-hand sides
of (1.9) and (1.10), is due to Burchnall and Chaundy ({2], p, 112) in pre-
ference, for the sake of brevity and elegance, to the one introduced earlier
by Kampé de Fériet ([1], p. 150).

Formula (1.9) provides us with a generalization of the generating
function (1.8). Indeed, in view of the relationship (1.1), it will correspond
to formula (1.8) in the special case when A =B, C =D =1, a; = b,
j=1...,A4 (or B), ¢, =, and d, = o.

Our earlier proofs of formulas (1.9) and (1.10) made use of Laplace’s
transform and its inverse in conjunction with the principle of multi-
dimensional mathematical induction. In the present note we first construct
a simple and direct proof of (1.9) and then develop its generalizations.
We also show that formula (1.10), which is proved in the last section
by using series iteration techniques, may be looked upon as a special
case of certain results, involving the Kampé de Fériet function, which
we derived elsewhere (see [12] and [13]).

2. Alternate proof of formula (1.9). For convenience, let us denote
the first member of equation (1.9) by 2. Making use of the elementary
relationships (cf., e.g., [8], p. 32)

_ (—1)f[Al _ (=1)m! _ =
(2.1) [Alpr = m y  [—nl = W y o [uln = fl—,u],,
(0 <k<mn, p # an integer),

which are immediate consequences of definition (1.4), we see that

0_ S EHLI@L NV M—adusl@k  (—2f
(0] & B—a—Blil@ & (k)

‘j o)l (- "‘”k S A1 L@l —al, s O
D k& L—a—plil®)l, (@m—h)!

V' N A k[0 [1— adu[(9)] ¢ (—at)*
,22 [(OInsell—a—pLI@L  n! kI

which is the same as the second member of equation (1.9).
This completes our direct proof of formula (1.9).
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3. Further generalizations and particular cases. The foregoing method
of proof of formula (1.9) suggests the existence of a generalization in
which the generalized hypergeometric ., Fp,,; polynomials are replaced
by another similar system with any arbitrary number of numerator and
denominator parameters like a8 —n and a—#». Indeed, if we consider
the double hypergeometric function

(@): (g); (e);
F t, —uat

(8): (h); (d);

VN (@)l Inl(0)), " (—2)"
T L L (O] [ [(@]0 m!I !

E (@) Iyl(9)y ¥ Z [~ N[l —(h) = N[ [(—1)% Za]"

& [(B)Iy[(m)]y V! [1—(9) = N1a[(d)1s n!
- ~N, 1-(W)-N, (e); tN
- 2 Tty e e |
—(9)—N, (d);
we shall arrive at the following generalization of formula (1.9):
—n, 1=(h)—n, (5 ]
0 S e |5
- 1—(g9)—n, (@;
(@): (9); (0);
=F t, (—1)FH+in|,

(0): (h); (d);

It is easy to observe that formula (3.1) incorporates, as its particular
cases, a large number of generating functions, known as well as new.
For instance, for the generalized Rice polynomials defined by (1.1) we
have

(@] ¢ emm .
,Z[(b)],.ﬂ R

(a): —a; a+B8+1, »;
= F —t, —at|,
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N [(a)] -
: —n __ gesn[y, o, g]l"
&9 &< [a+1L[(0)]. " s 0, 21t

(@): —; a+f-+1, »;
=1 t, —uxt

(b): —; a+l, o;
and .

% [(a)]. (a=n,p—n) n
) R R

(a): —a; v
=F —t, xt
(8): —a—§; o;

The last formula (3.4), which follows also as a special case of our

earlier result (1.9), is a generalization of the known generating function
(1.8). Also since

—n,a+pf+n+1;
(3.5) HEO[y,», 0] = (“J“"')ZFI o| = PP (1—2a),
n
a+1;

where P{*f) (1) denotes the Jacobi polynomial defined by (see, for instance,
[15], p. 68)

et a _1\k n-k
(3.6) PP (z) = Z(,::) (ﬂ;;n)(”’2 1) (‘Hz_l) )

k=0

therefore formulas (3.2), (3.3) and (3.4) can be further specialized, by
letting » = o and replacing = by (1 —x)/2, to obtain generating functions
for the special Jacobi polynomials P@~% (z), P{@#~" (5) and P {*~™P~™ ()
respectively. Note, however, that the generating functions thus obtained
for P*™P (5) and P*~™ (x) will be capable of being transformed into
each other, since it is well known that ([15], p. 59)

(3.7 P3A(@) = (=1)"PPI(—a).

By reversing the order of summation in (3.6) it is readily seen that
(see also [8], p. 255, (8))

—n, —a—n;

(38) POP(q) = (ﬁM)(w—l)ﬂzFl o+l
% 2 z—1

B+1;
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The relationship (3.8) would enable us to write the special case of formula
(3.1), when ¢ =D—-1 =0, G=H—-1=0, d, =8+1, hy = a+1, in
the form

o Z T e e
(@): —5 =
—F Ho—1)t, }o+1)t],
(b): a+1; pB+1;

which is a generalization of the late Professor Brafman’s generating
funetion (1), p. 271 in [8], viz.

[¥1.[6], Pa:s)
= l[a+1],[8+1], "

= F,[v,0,; a-+1, +1; (xz—1)t, (z+1)t],

(3.10) ()"

where F, denotes the fourth Appell function defined by ([1], p. 14)

(3.11)  Fyla, B; v, ¥'; @, yl = 2 [ag:;n[[f’]]m+n fn’! _Z'T

(" + ly|'* < 1).

We remark in passing that since ([15], p. 81)

PO (g) = ( )— CeH 2 (a),

PO (@) = 07 () = Pp(a),

a-}-'n,) (2a+%

(3.12) n n

where O, (x) denotes the Gegenbauer (or ultraspherical) polynomial, and
P,(x) is the Legendre polynomial, the aforementioned results, involving
Jacobi polynomials, can be appropriately specialized to derive generating
functions for ultraspherical and Legendre polynomials. Also since a large
variety of known polynomial systems, such as the Laguerre polynomials
L{®(z) and L ™(x), the Bessel polynomials Y™ (), etc., are merely
particular cases of the generalized hypergeometric polynomials involved
in formula (3.1), it will not be difficult to deduce generating functions
for these polynomials as special cases of our result (3.1).

Next we consider those special cases of formula (3.1) in which the
double hypergeometric function, occurring on its right-hand side, would
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reduce to one or the other of the four Appell functions #,, F,, F, and
F, (see [1], p. 14 for details). From (3.1) we thus obtain

14

. —n, My
' 2: [Alalt]n &
(3.13) Fyfd, py e v; t;“'t] = T oy v YR
| " 1—p—mn;

(3.14) Foli,p,p'5v,7v;t, —at]

—ny, 1—y—mn, u;

l n
[ ]n[.u']n Fz T t_,
[v],, n!
n=0 ’
L—pu—n, v;
(3.15)  Fy[i, X, p, 45 v; t, —at]
. —n, A, ;“'5
Z lalel o i ¢
3 2 N
o~ [v] !
1—A—n, 1—u—mn;
and
- —n, L—v—mn;
, A "
(3.16) B, [A, u; v,v; t, @] = [—M o @ —
e (v]. 7 ) n!
v

Evidently, formula (3.13) may be rewritten as a generating function for
the Jacobi polynomials P{"~™%(z) or P#~™ (7). Formula (3.16) is equi-
valent to Brafman’s generating function (3.10). On the other hand, formula
(3.14) is essentially the same as the known special case (1.8) of the gen-
erating relation (3.4). And in view of definition (1.1), formula (3.15)
gives us the elegant generating function

(3.17) Z =0k pa-nny 5n, g1
n=0
= Fy[—a,a+p+1,1—0,v; o; —t, xt]
which does not seem to have been noticed earlier.
It may be of interest to note that the generating relation (3.1) admits
itself of an obvious further generalization given formally by

00 [n/n:]
[_n]mkwk tn
(8.18) 2‘5"{2 Ak =71 n!
n=0 =0

BV t" [o(—t)")F
n=0 k=0
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where m is a positive integer, and the coefficients d, and 4, , are arbitrary
constants, real or complex. Thus it would seem fairly easy to deduce
from (3.18) several classes of series relationships by suitably specializing
these arbitrary coefficients. We, therefore, omit the details.

4. The bilinear generating relation (1.10). We now turn to formula
(1.10). Let us first recall our bilinear relation (4.8), p. 237 in [12]:

e—n, (a); o+mn, (c);
2 [v+n
(4.1) 2( n )A+1FB @ o1 Fp "

n=0
(b); (d),

e NPT (@) (c)],.
—i= Z( ) tonta |- ]

(a)+n: o; v+n+1;

xX B z,

(B)+n: —; -3

(e)+n: c—y—1; v+n+1;
x B Y, =

(@) +n: —; -
where A < B, C <D, and ||, |y], |t| are appropriately constrained in
order that each side of (4.1) possesses a meaning.

For ¢ = ¢—v—1 =0, formula (4.1) would obviously correspond to
our earlier result (3.4), p. 309 in [10] which, when p = ¢ =r =8 =1,
yields the bilinear relation (19b), p. 345 of Meixner ([7]; see also [5],
P. 84, (9)). Note that in another paper [13] we have discussed the possibility
of further extending formula (4.1) with the product

o—mn, (a); at+mn, (0);
(4.2) 4+1F8 & | o Fp y
(b); (d);
replaced by the double hypergeometric function
(@): g—m, (b); o+mn, (b');
(4.3) F z,y

(e): (d); (d');

’
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or by the formal double series

: 00 o ;- . 4_ ,
(4.4) ZZ[Q "T]!Z ul. Erns®" Y’

=0 §=0

where the £,, are arbitrary complex numbers, », s = 0, 1, 2, ... For similar
generalizations of our formula (2.5), p. 113 in [11] the reader may refer,
for instance, to the summation formula (1.4), p. 231 in [12].

In the bilinear relation (4.1) we replace A,C by A+1 and C+1
respectively, and set a4, == —m, ¢g,y = —k, 0 =0 and ¢ =v+1 = 4.
On simplifying the right-hand side of (4.1), we shall arrive at our formula
(1.10). Use may be made of our expansion formula (11°), p. 52 in [14].

For a direct proof of formula (1.10), without using the bilinear re-
lation (4.1), we notice that

—n, (a); A+n, (€);
I(z,y) = [;;:!" 4+14B % | cy1Fp vyl
(b); (@);
- e —n, (a);
_ [A1:[()]s ¥° [A+5], Py A

(@], s'&  w!

8=0

(8);

In order to sum the inner series we make use of the late Professor Chaundy’s
formula ([3], p. 62, (25))

. —n, (@) n

tn' A+1F.B T tn - (]—t)_A+1FB

(b);

t—1
(2);

which corresponds to (4.1) with ¢ = y = 0 and follows also as a special
case of our formula (1.7), p. 111 in [11]. We thus have

n=0

Ats, (a);
o [AL[(0)]s [¥/(1—1)F t
1o,9) = -7 Y L O WEZOL | p, L
| (0);
3 Lo N0 N A (@)L @), [st/e—1)T [y/@—1))
— = Z ()} 1(@)], ! s
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and we arrive at the bilinear generating funection
—n, (a); Ad-m, (e);

[4]n

(4.6) o

anl'p zlend'p y
(b); (d);
A (a); (0);

e

n=0

xt Y
=(1—t)7*F —_—
(=) t—17 1—t |’

—: (b); (d);

which obviously would yield formula (1.10) when we replace A4, C by
A+1 and C+1 respectively and set a, +1 = —m, Cg., = —k.

Incidentally, formula (1.6) provides us with an elegant form of our
bilinear relation (3.4), p. 309 in [10]. Also it would suggest that in the
special case when ¢ =0 and o =v+1 = 2, our summation fermula
(2.3), p. 39 in [13] may be written as

(@): —mn, (b); A--n, (b);

@,y |t
(¢): (d); (d);
L, (@): (B); (b);

= (1—1)*F e

(e): (d); (d);

which evidently is an interesting generalization of the bilinear generating
relations (1.10) and (4.6).

Formula (4.7) can be obtained, for instance, by comparing the second
member of our earlier result (3.1), p. 41 in [13] with our expansion formula
(11), p. 50 in [14].
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