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CLOSED MAPPINGS WHICH LOWER DIMENSION

BY

JAMES KEESLING (GAINESVILLE, FLORIDA)

The purpose of this paper is to prove an improved version of the
Hurewicz theorem for closed mappings which lower dimension ([12],
Theorem III.8, p. 63-68). The theorem we prove was first proved by
Jung [4] for mappings on compact spaces. This paper also provides an
alternate proof of the classical Hurewicz theorem in general metric spaces.

Related papers on closed mappings which lower dimension are Jung
(31, [4], Lelek [8],[9], Morita [10], Nagami [11], and Skljarenko [13].
We also improve a result of Williams [14]. Other related results are in
(5], [6].

Throughout the paper we assume that X and Y are general metric
spaces with f: X — Y a mapping from X onto Y. By dimX is meant
the Lebesgue covering dimension of X. A reference for dimension theory
in general metric spaces is Nagata [12].

We first prove a few results which will be needed in the proof of
Theorem 4 which is our main result.

1. THEOREM. If f is a closed mapping and A, = {y<¥ : dimf~'(y)
>n}, then A, is an F, in Y.

The proof is simplified if a special case is proved first.

2. LEMMA. If A is a compact subset of the space X and for each ¢ > 0
there is a finite open covering {U;} of A such that ord{U;} <n+1 and
diam U; < ¢ for each i, then dimA < ».

It is clear that this lemma characterizes the dimension of the compact
subsets of a metric space. For a proof see Hurewicz and Wallman [2],
Theorem V.8, p. 67.

3. LEMMA. Let f be closed with compact point imverses and A, as in
Theorem 1. Then A, is an F, in Y.

Proof. It will be equivalent to show that if B, = {yeY : dimf~'(y)
< n}, then B, is a G5 in Y. Let B,; = {yeY : there is an open cover
{Ui:i=1,...,p} of f'(y) with diamU; < 1/k and ord {U;} <n+1}.
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Now B, is an open set, for if yeB,, then let {U;} be an open cover
of f~'(y) satisfying the conditions for y to be in B, . Then let

U= Y- f(X—inJl U).
Then yeU and since f is closed, U i—s open. Now let ze U. Then
) e :L;)l Us.
Thus 2eB, and U < B, . Therefore B, is an open set. However,

B, = ﬂ B, by Lemma 2 since f~*(y) is compact for each yeY. There-
k=1

fore B, is a Gs.
Proof of Theorem 1. Let

X, = VEIJ? Fr(f~'(y)).

Then X, is closed in X and f|X,: X, - f(X,) is closed with compact
point inverses. Thus by Lemma 3 the set A, = {yf(X,): dimf~'(y) ~
~X,>=n} is an F,. Let A, = {y<Y : dimintf~'(y) > n}. Then let

B = U intf(v).

ZIEA;.

Then B is an open set in X which maps onto A4, . But then B is
an F,, and thus 4, is also an F, by the closedness of the mapping f.
Now if yed,, then either dimFr(f~'(y)) > »n or dimintf~'(y) > n. The-
refore A, = A, v A. and A4, is an F, as asserted.

4. THEOREM. Let f be closed with dimX >n >m > dimY. Then
n < dim A+ dimf, where A = {ye¥ : dimf~'(y) > n—m}.

We still need some more results before we can proceed to the proof
of Theorem 4. Some of the lemmas that we prove should be of interest
in themselves.

5. LEMMA. Let {C;}i=, be a countable collection of mon-empty F,s
in X with dimX = n and dimC; = n;. Let F and G be disjoint closed
sets in X. Then there 18 an open set U with F < Uc U c X—@G with
dimFr(U) < n—1 and dimFr(U) ~ C; < m;—1.

Proof. Let A, be an F, in X with dim4, = 0 and dim(X— 4,)
= n—1.Thenlet A; = C;bean F,in (;, hence an F,in X, with dim4; = 0

and with dim(C;— 4;) = n;—1. Then let A = |J A;. Then A is an F,
=0

1

and dimA4 = 0. Let F and G be as stated. Then it is possible to find an
open set U with Fc Uc U <« X—@ such that Fr(U) ~ A = @. But
then dimFr(U) < n—1 and dimFr(U) ~ C; < n;—1.
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6. LEMMA. Let {C;}2, be a countable collection of mon-empty F,’s
in X with dAim X = n and dimC; = n;. Then if {U,:yel'} is an open cover
of X, then there is a locally finite open refinement, {V,: aeA} of {U,} such
that AimFr(V,) ~ C; < n;—1 for all ¢ and all a and dimFr(V,) <n—1.

Proof. Let {W,:aeA} be a locally finite open refinement of
{U, : yeI'} and {F,} a closed refinement of {W,} with F, « W,. By lemma 5
there is for each a a V, open with F, < V,c ¥V, c¢ W, with dimFr(V,)
<n—1 and with dimFr(V,) ~ C; <m;—1. Then {V,} is the required
collection. It refines {W,} and thus {U,} and is a cover since F, < V,
for each a.

7. LEMMA. Let X = C, v Cy with C; closed in X. Let f;:C; — 8,
for i =1 and 2. Suppose that dim{peC; ~ C;: fi(p) # f2(p)} < n—1.
Then f, can be extended over all of X into S,.

Proof. This is in Nagata [12], I11.3.C, p. 58.

The reader should be reminded of the characterization of dimension
in terms of mappings into spheres ([12], Theorem III.2 and Corollary,
p. 53-54). It is this characterization of dimension that will be used in
proving Theorem 4.

8. LEMMA. Let C be a closed subset of X and suppose that g: C — S,,.
Let {Vo:aeA} be a locally finite open collection in X such that for each
a,g has an extension g, mapping C o V, into S,. Then if dimFr(V,)

< n—1 for all a, then g has an extension to C w (\J V,) into S,.
aeA

Proof. Let A be well ordered. Let oy * Cou Va, — 8, be the given
extension of g to C v V for a,. Suppose that an extension G has been
constructed for C v (U V) for all # <y such that for 8, < 8, < 7, Gy,

a8

= G5,|C v (U V.). Then letting G,(x) = Gs(x) for z¢C v V4, G, will be

agh

well defined and continuous on C v ((J V.). Note also that C w (U Vo)

a<y _a<y
is a closed set. Now let g, be the given extension of g to C v V,. Let

9, =g,1C v (V,—UV,). Then for B = {p:g,(p) #G,(p)} we have

aly

B c (J-Fr(V,) and thus dimB < n—1. Thus by Lemma 7 there is an

a<y

extension of G, to C u ({UV.). Call this extension @,. Then G, extends

a<y
all of the @G; with g8 < y. By transfinite induction it is now clear that there.
is an extension G:C u (UV,) — 8, of g.

aed
Proof of Theorem 4. The proof of the theorem is by induction

on m. The theorem is vacuously true for m = —1. Suppose that it is
true for lesser values of m and let m > 0. There are two cases to consider.
Case (i). dimf > n.
Then A # @ and thus » < dim A +dimf since dim4 >
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Case (ii). dimf < n—1.

In this case » > 0 and let g: C — 8,_, be continuous with C closed
in X such that g has no continuous extension to all of X. Such a g exists
because dimX >mn—1. Since dim[f'(y) ~C]<n—1, by Lemma 7
there is an extension of g to C w f~'(y). Thus there is an extension of ¢
to a set U, such that U, is an open set containing C v f~'(y) (see [1],
Corollary 53, p. 151). Let W, = Y—f(X— U,). Then W, is open in Y
and yeW,. Let {V,: ael'} be a locally finite open refinement of {W,:
9 ¢ Y} which has the property that (1)dimFr(V,) < m—1 and (2) dimFr(V,)
~ A <dimA—1 provided A # 9. This is possible by Lemma 6 and The-
orem 1. Let U, = f~*(V,). Then {U,} is a locally finite open cover of X
and g can be extended to ¢ v U,. By Lemma 8 there must be some
ael’ such that dimFr(U,) > n—1 or g would have an extension to all
of X. Let B =f~'(Fr(V,). Then Fr(U,) = B and thus dimB>n—1.
Let ' =f|B:B —Fr(V,). Then f' is closed. Let A* = {yef (B):
dimf~'(y) > (n—1)— (m—1)}. Clearly A* = A. By the induction assump-
tion A* # O and hence A # @. However, A* = Fr(V,) also and therefore
A* €« A ~ Fr(V,). This implies that dim A* < dim A —1. By the induction
assumption one has that n—1 < dimA*-+dimf . This leads to n—1
< dimA4—1+4dimf and thus n < dimA + dimf.

9. COROLLARY. If dimX >dimY = m and f is a closed mapping
with A = {yeY :dimf'(y) > dimX—m}, then dimX < dim A4+ dimf.

Proof. This is clearly true if dimX is finite by letting » = dim X
in Theorem 4. If dimX is infinite, then dimf must also be infinite by
Theorem 4 since dim A is bounded by m for all n. Thus in this case also
dimX < dim 4+ dimf.

Since we did not use the Hurewicz theorem in the proof we can now
state it as a corollary.

10. CorROLLARY. If f is closed, then dimX < dim Y + dimf.

It is also clear from the proof of Theorem 4 that the following the-
orem holds. This result was first due to Williams [14] for compact X.

11. THEOREM. If f is closed and dimX > n with dAimY < m, then
there is a closed set K = Y with dimK < m—1 and with dimf~'(K) > n—1.

12. CoroLLARY. I} f is closed and dimX >n >m > dimY, then
Jor every 0 < k < m, there is a closed set K = Y with dimK < k and with
dimf~'(K) > k+n—m.

This last result is a generalization of the Hurewicz theorem in a certain
sense.
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