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The space of multipliers into [,

by P. WoJjTAszczYk (Warszawa)

Abstract. The reflexivity of the space of multipliers from H), into I, is proved
using general Banach space methods. We improve Duren’s [2] description of multi-
plies from H, into ;.

Caveny [1] has proved that the space of multipliers from H,,
1< p< oo, into I, is a dual space. In the present note we give a general
result (Theorem 1) which implies that for p > 1 those spaces are in fact
reflexive and for p = 1 the space of multipliers is a second dual of a certain
Banach space. '

The author would like to thank Professor T. Figiel for pointing out
an error in the first version of the present paper.

In this note we use standard Banach space techniques. Also our
notations are standard in Banach space theory (cf. [7]).

Let us recall that a sequence (z,, x}), consisting of pairs of elements
of a Banach space X and bounded linear functionals from X*, the dual
of X, is said to be biorthogonal if x,(2,) = 5, ,. A biorthogonal sequence
is bounded if sup |z,| < oo and sup|z,|| < co. A sequence is fundamental
if linear combinations of z,’s are dense in X. All the biorthogonal sequences
considered in this paper are assumed to be fundamental and bounded.

If we have an biorthogonal sequence (z,, #,), the sequence (4,) is

said to be a multiplier of (x,) into 1, if, for any w e X, 3 [4,2)(z)] < oo.
n=1

It is clear that (4,) can be considered as an operator from X into I,. The
space of multipliers of (z,) into I, equipped with the operator norm will
be denoted by {(z,), [;}. It is easy to see that it is a Banach space.

The subspace of compact operators in {(x,), l,} will be denoted by
K{(mn) H ll} .

Let K (X, Y) denote the space of all compact operators from X into Y.
The following proposition is well known (cf. [3]).

PRrOPOSITION 1. Let X be a Banach space with separable dual X*
and let p € K (cy, X)*. Then there exist two sequences () = X* and (f,) < 1,
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with 2 izl Ifll < 2 lipll such that for T € K (e, X) we have o(T) = 2‘ T** f.(25).

n=1
LEMMA 2. Let X be a Banach space with an unconditional basis (xz,).
Then

(a) X 18 reflewive if and only if X does not contain neither a subspace
1somorphic to l; nor c¢,,

b) if X does not contain any subspace isomorphic to 1,, then

~
xX** = {(an): sgp”ganmnn < oo},

(e) if X contains a subspace isomorphic to ll, then there exist an in-

41
creasing sequence of indices (n,) and sequence of vectors z, = D' a;x; such
that (z,) s equivalent to the unit vector basis in I,. mytl

This is a well-known lemma and its proof can be found in [7] or [8]
or [6].
- THEOREM 1. Let (#,, ;) be a bounded and fundamental biorthogonal
system such that span(x,) = X*. Then the space {(2}),1,} is & second dual
of K {(=}),1,}. Moreover, the following conditions are equivalent:

(8) {(@}),1,} is separable,
(b) {(=}), 1} is reflexive,
(e) {(=}),!,} does mot contain a subspace isomorphic to ¢y,
(d) {(=}), 1} does not contain a subspace isomorphic to 1,

(e) {(.’L’;), L = K{(w;)9 L
Proof. Let us define the unit multipliers 6, by 6, = (4,,,,), where 4, ,,
is a Kronecker symbol. It is clear that the sequence (4,)r_, forms an
unconditional basic sequence in {(z}), I,}.
Now we want to prove that span(s,) = K {(#}), ,}. Let 4 = (4,)
be a compact multiplier and let 4, denote the multiplier (4,, 4,,...
<32y, 0,0,...). Clearly, A, espan(d,). We have

l4—A4,)l = sup [ d(z*)— A4, (z*)]|

z*eX,llz|=1

= sup ||E,A(2*)| = B, Al

zreX®, llz*l=1

where R,,: I, — 1,is a norm one projection given by R, ( 2 &) = 2 ..
k=n+1
Since 4 is a compact operator, IR, All = 0 what proves tha,t A e span(4,).
Obviously, span(d,) = {(#1), l,}, so our claim is proved.
Now we want to prove that K ({z}},l,) does not contain a subspace
isomorphic to 1,. Observe that each element A = (4,) in K({z}},1,) is
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a conjugate operator of the same multiplier considered as a multiplier
from ¢, into (x,,). This shows that K ({z}}, l,) can be considered as a subspace
of K(c,, X). Suppose that K ({z;},1,) contains a subspace isomorphic

to l,. Then by Lemma 2¢ and Proposition 1 there exist multipliers 4, =
Ng+1

= Y a, 6, equivalent to the unit vector basis in I, and sequences () = X*
) n q. n
ng

and (f,) < l, such that Z‘ lznll If,]l is convergent and 2 A folem) =1
for every k. = =

Since (a;n) are dense in X*, we can assume without loss of generality
that 2 2 y,w;. Let us take N such that Z lZ2]] If,)l < 0.5 and k, such

that n, > max{r n < N} An easy calculatlon shows that for & > Ek,
and n < N we have /1*"' fa(22) = 0. But it means that for k > %, we have

| D

This contradiction shows that K ({z}},1,) does not contain any subspace
isomorphic to I,.

Since {(wn) L} = {(a,): sup|| 5 an 8,]| < oo}, we have from Lemma 2(b)

that {(2}), l,} = (span( n))**

Now we will prove that conditions (a)—(e) are equivalent. (a) < (b)
< (¢) < (d) because {(z}), l;} is a second dual of a space with an uncon-
ditional basis not containing any subspace isomorphic to I, (cf. [8]).
Since K {(#y), l,} = span(é,), we have (e) = (a) and eclearly (b) = (e).
This completes the proof of the theorem.

< 0.b.

Remark. The assumption that we consider the multipliers from a sepa-
rable dual space into I, is important. For example, natural multipliers
from ¢, into I, are exactly l,, so they are separable but not reflexive and
each multiplier is a compact operator.

COROLLARY 1. If (w,) ¢ a bounded and fundamenial biorthogonal
system in a reflexive space X, then the space of multipliers into 1, is reflexive.

Proof. Apply Theorem 1 to the system (), x,) and use the fact
that any operator from a reflexive space into I, is compact.

Now we consider the multipliers from a Hardy eclass H, (L <p <2)
into I,. For the definitions and properties of H, see [2]. Note only that
elements of H, are analytic functions in |2] < 1 and that we always consider
multipliers of the system 2”. Our goal now is to prove.

THEOREM 2. The space of multipliers from H, (1 <p<2) into I,
is a reflexive Banach space. The space of multipliers from H, into 1, is a non-
reflexive second conjugate space.
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Proof. Only the second part of the Theorem requires a proof. The
first part is a special case of Corollary 1. Observe that H, = (C(8)/A4,)*,
where C(8) is a space of continuous functions on [2| = 1 and A4, is a subspace
of the disc-algebra consisting of functions vanishing at zero (cf. [2], [5]).
Therefore we can apply Theorem 1 to the biorthogonal system (f,,2"),
where f, is a coset in C(8)/4, containing z~". The only thing to be done
is to exhibit a non-compact multiplier from H, into !,. This we do in the
following

LEmMA 3. The Hardy multiplier H = (1/n-+1)y_, is a non-compact
multiplier from H, into l,.

Proof of the lemma. The sequence (1/n+41);_, is a multiplier
from H, into I, by the Hardy inequality (cf. [2], [5]). To see that it is
not compact, let us consider the functions

Ty =2 1 2 Z "+1n_+|]1°—"| &

k=0 s=—k

From the properties of the I'éjer kernel (cf. [5]) it follows that |[F,| = 1.
Observe that
2n

>ﬂ 1 n+l—|k—mn)

IH (F,) T ——T

= 0.5.

Since H (F,) converges coordinatewise to zero in I,, we infer that H is
not compact.

Let (e,)7—, be the unit vector basis in l,. The operator d,: I, — [,
is defined by

e; If k<n and k=mn
d"(ek)={6 g ha e

THEOREM 3. The sequence (1,) is a compact multiplier from H, into 1,

if and only if the series )’ A,d, is unconditionally convergent in B(l,).

n=0
The proof of this theorem follows easily from the results of Hedlund [4]
and the following elementary fact.

LEMMA 4. Z Aod, 18 unconditionally convergent in B(l,) if and only
o0 n=0

if Z [A,|d, is convergent.
=
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