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Introduction. Unless otherwise stated, the word “graph” shall refer
to the graph of a real function, and if f is a point set in the plane, the
X-projection of f is the set of all abscissas of points of f. The statement
that the graph f is a Darboux graph means that if C is a connected subset
of its X-projection, then f(C) is connected. This class of graphs has been
extensively investigated, and the expository article [2] by Bruckner
and Ceder gives a detailed survey of work done in this field. There are
many interesting examples of graphs having this and other rather unex-
pected and sometimes drastic properties. In many of these examples,
the graphs are found to be dense in some circular region of the plane.
It is the purpose of this paper to investigate those Darboux graphs which
do not have this last property. In particular, the following will be shown:

THEOREM. If f is a Darbouxr graph with X-projection an interval,
then f is nowhere dense in the plane if and only if f is either continuous or
else discontinuous only on a set of the first category.

An example will be given to show that this theorem does not gene-
ralize to the more general Darboux transformations considered in [3].
Knaster and Kuratowski in [6] gave an example of a Darboux graph
which is not a connected set, and Marcus in [6] proves with the aid of
the Axiom of Choice that there actually exists a Darboux graph which
is a totally disconnected set. An elementary example of a nowhere dense
Darboux graph which is not connected will be given here, and it will be
shown that Marcus’s example can be altered to yield a nowhere dense,
totally disconnected Darboux graph with X-projection an interval.

Proof of the Theorem. Suppose that f is a Darboux graph with
X-projection an interval I. If there is a region R in which f is dense,
then if J is an interval which is a subset of the X-projection of R, f would
be discontinuous at each number in J. In this case, the set of numbers
at which f is discontinuous would not be of the first category.

Now, suppose f is nowhere dense in the plane. Assume f is not con-
tinuous, and let M denote the set of all numbers « at which f is discontinu-
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ous. M must be of type F,, and a set of type F, is either of the first
category or contains an interval. Suppose I, is an interval which is a subset
of M. For each number ¢ of I,, let

p: = limsupf(z)—liminff(z),
fo

F N

if that is a number, and let p, = 1, otherwise. Let I, be a subinterval
of I, and p be a positive number such that the set N = {t|p, > 2p} is
dense in I,. If t is in I,, and d is a positive number, there is an element »
of N within d/2 of ¢, and there are numbers z and y within d/2 of u (thus
within d of t) such that |f(x)—f(y)| > p. Therefore, if ¢ is in I,, p, > p.
Now, for each ¢ in I,, let 2, be a number such that

limsupf(x)—2 >p/2 and z—liminff(z) > p/2.
t Tt

T—

There must be a number K and a subinterval I, of I, such that
V={lK<z<K+p/4} is dense in I;. Consider the open set
D = {(x, y) |z is interior to I; and K <y < K-+p/4}. It will now be
shown that f is dense in D. Let R be a circular region lying in D. Let ¢
be an element of V in the X-projection Xz of R. There are numbers a
and b in Xy such that

IlimS}lpf(w)—f(b)l <p/4+ and llimitnff(ﬂv)—f(a)l <pl4.

Thus, f(b) > K+ p/4 and f(a) < K. Let w denote the ordinate of
the center of R. There is a number ¢ between a and b such that f(¢) = w.
Then (¢, w) is a point of f in K. This means that f is dense in D, which
is a contradiction.

Comments and Examples. It seems likely that the theorem above
can be generalized to the real valued functions of several real variables.
However, such is not the case for the general Darboux transformations
from an Euclidean space X into a separable metric space X* such as
those considered by A. M. Bruckner and J. B. Bruckner in [3]. The fol-
lowing is a transformation 7' from the plane E, into E, such that (1)
if C is a connected set in the plane, then 7'(C) is connected, (2) 7, consi-
dered as a subset of F, X E,, is nowhere dense, and (3) T is totally discon-
tinuous.

Example 1. Let H be a collection of mutually exclusive, countable,
dense subsets of the set E of all real numbers such that the union of all
the sets in H is F, and let @ be a reversible transformation from H onto
the set 8 of all lower semicontinuous graphs with X-projection E. Let f
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be the graph such that if # is a number, and 4 is the set in H which contains
x, and g = @Q(h), then f(x) = g(x). The graph f is dense in the plane,
and it follows from the theorem of [1] that if C is a connected number
set, then the contraction of f to C is connected in the plane. Now let T
be the transformation from F, into E, such that if (x, y) is a point of F,,
T((x,y)] = (,f(x)). If C is a connected subset of the plane, then the
X-projection Cx of C is a connected number set, and T'(C) is the contraction
®f f to Cx and is therefore connected. Now, let U be a “region” in E, X F,,
iie. let U = VX W for a pair V and W of regions in the plane. Let V’
and W’ be subregions of ¥V and W, respectively, such that the X-projec-
tions of V' and W' do not intersect. No point in ¥V’ has an image under 7'
in W, 80 V"X W' is a “subregion” U’ of U in E, X E, that contains no
ordered pair of 7. Thus T, considered as a subset of E, X F,, is nowhere
dense. T is obviously totally discontinuous. Notice that 7' is not even
peripherally continuous in the sense of Hamilton [4], so that 7T is not
a connectivity function.

Example 2. The following is an elementary example of a nowhere
dense Darboux graph which is not connected. Let M be the “middle
third” Cantor subset of [0, 1]. For each positive integer pair (n, j) such
that j < 2"', let 8, ; be the j™ from the left component of [0,1] — M
which has length (1/3)", and let I, ; = C1(S, ;). Let M’ be the set of all
elements z of M such that x not an end of any interval I, ;. Let g be
a non-decreasing graph with X-projection [0, 1] which is continuous
from the right, discontinuous o}:lly at the left ends of the intervals I, ;,
and constant over each I, ;, and such that g(0) = 0 and ¢g(1) = 1. Now,
let f be a graph with the following properties:

(1) if » is an odd positive integer and j < 2""' and [a,d] = L,;,
then the contraction of f to [a, b] is continuous and entirely above the
contraction of g to [a, b], reaching a maximum value of 1, and such
that f(b)—g(b) = f(a)—g(a) < 1/n;

(2) if » is an even positive integer and j < 2" ! and [a, d] = I,;,
then the contraction of f to [a, ] is continuous and entirely below the
contraction of g to [a, b], reaching a minimum value of 0, and such that
g(b)—f(b) = gla—)—f(a) < 1/n,

(3) if # is in M’, then f(z) =1 if x < 1/2 and f(z) =0 if z > 1/2.

The graph f is obviously nowhere dense, because it is continuous
except for the elements of M. Let A be the set to which Z belongs if and
only if Z is a point of the graph ¢ or on a vertical interval with end
points on Cl(g). A is an arc which separates f, so f is not connected. Now,
suppose C is a connected subset of [0, 1]. If C is a subset of some interval
I, ;, then the contraction of f to C is continuous, so that f(C) is connected.
Suppose C contains an element of M’'. Then C contains two elements x
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and y of M', x <y. Let d = g(y)— g(x), which is positive. Let » be an
odd positive integer such that 1/n < d{4 and j be a positive integer less
than or equal to 2"~ ' such that I,, ; is a subset of [x, y}and g(?) < g(x)+d/4
for each ¢ in I, ;. Let m be an even positive integer such that 1/m < d/4
and k be a positive integer less than or equal to 2™ ' such that I, is
a subset of [#,y] and g(¢) > g(y)—d/4 for each ¢ in I, ;. Then f(I,;)
= [u, 1] and f(Inx) = [0, v], where » < g(x)+d/2 and v >g(y)—d/2.
Therefore f(C) = [0, 1], and f is a Darboux graph. Notice also that f
is in the second Baire class.

Example 3. In Theorem 4 of [6] Marcus uses the axiom of choice
to prove that there is a graph f with X-projection the set of all real
numbers such that (1) f takes on each real value ¢ times (¢ is the cardinality -
of the continuum) over each real perfect set, and (2) if a is a rational
number different from 0, and b is a rational number, then the line L:
L(z) = ax+b and f do not intersect except possibly on the X-axis. Let f
be such a graph. Now, for each interval J, let M; denote the “middle
third” Cantor subset of J, and let N; denote the set of all numbers
such that x is in M; but neither an end of J nor an end of any component
of J—M;. Let I = [0,1], and let H, = N;. For each integer n greater
than 1, let H, denote the set of all numbers x# which belong to N, for
some non-degenerate component J of I—H, v H, v ... v H,_,. Now,
let ¢ be the graph with X-projection I defined as follows: if « is in I,
and n is a positive integer such that z is in H,, and 0 < f(z) < 1/n, then
g(x) = f(x), otherwise g(x) = 0. Suppose C is a connected subset of I.
There is a least positive integer » such that C and H, intersect. There
is a subsets A of H, and a countable set B such that A v B is a perfect
subset of C. Marcus’s function f takes on each real value ¢ times over
A v B, so g(C) = [0,1/n]. Thus, g is a Darboux graph. Since ¢ is contin-
uous except on a set of the first category, ¢ is nowhere dense in the
plane. g has property (2) of Marcus’s function and there is a dense subset
of [0,1] over which g assumes only positive values, so that each two
points of g are separated by the union of two rays L and L’ having only
their end point in common such that L is a vertical ray extending downward
and L’ is a subset of one of the lines hA(x) = ar+ b, where a is rational
and different from 0 and b is rational.
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