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Introduction. In the present paper we are concerned with the linear
functional equation of the first order

(1) pLf(@)] = g(z, )o(@)+F(z,1),

where ¢(z) is an unknown function and f(zx), g(«, 1), F(z,t) are known
real functions of real variables and ? is a real parameter.

In Section 1 we show that under some assumptions concerning the
given functions f(z), g(x, t) and F(z, t), the solution ¢(z, t) of equation (1)
which is continuous with respect to x is also continuous with respect
to the couple of variables (z, ?).

In Section 2 we shall prove that this solution has & continuous deriv-
ative 0p/d¢t and in Section 3 that ¢(x,t) is of clags O, 1 < p < oo with
respect to the parameter .

For the natural parameter the continuous dependence on given
functions of solutions of equation (1) has been investigated in [3] and [2]
and for the more general equation

p(z) = Hy(z, ¢ [fa(2)])

in [4] (under different assumptions).

1. Solutions of class (° with respect to the parameter. The functions
f(z), g(z,1), F(x,t) will be subjected to the following conditions:

(i) The function f(x) is continuous and strictly increasing in an
interval <{a, b), a < f(x) < « in (a, b), f(a) = a.

(ii) The function g(x,t) is continuous in {a, b) xT, where T is an
interval (finite or not), g(z,t) # 0 in {a, b) xT.

(iii) The function F(z,?) is continuous in <{a, b) xXT.
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Let us iatroduce the notation:

fl@y =u, [z =f1f"@)],

n—1

(2) Gulayt) =[] g1 (2), 1],
v=0

(3) Gz, t) =lim G, (x,1),

DEFINITION. We say that a function H(x,t) is locally bounded in
{a, b)XT, if it is bounded in every compact set of the form <a, d> X
X {a, B>, where <(a,d) c (a,b) and {a,f) = T.

Suppose that:

(iv) There exist constants 6 and 7, 0< 0<1, 0<y< b—a, and
a locally bounded function H,(z,t) such that the inequalities

(4) lg(z, t)—1| < H{(x, 1),
(5) H,(f(z), 1] < 0H, (2, 1),
hold in {(a, a+%)xT.

(v) There exist a locally bounded function H,(x,t) and a constant
0 < 79 < b—a such that the inequalities

(6) |F(x, t)| < Hy(x, 1),
(7) H,[f(#), t] < 6H,(x, )

hold in {a, a+7,) XT (6 is the constant occurring in (5)).

THEOREM 1. Suppose that hypotheses (i)-(v) are fulfilled. Then, for
every function c(t) continuous in T, there exists exactly one function ¢(x, 1),
continuous in {a, b) x T, satisfying equation (1) and fulfilling the condition
pla,t) = c¢(t). It is given by the formula

c(?)
G(z,1)’

(8) @(r,1) = @2, 1)+
where

O FL (@), t]
Gn+1(“"7t) .

The proof of the above theorem does not differ essentially from
that given in [1] (Theorems 6 and 5) and is therefore omitted. Let us
note that solution (8) is also the unique solution of equation (1) which,
for every teT, is continuous with respect to « in <a, b) (cf. [1]).

THEOREM 2. Suppose that hypotheses (i)- (iii) are fulfilled. If, moreover,
(10) g(a, )| >1  for teT,

(9) Po(@,y ) = —

n=
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then equation (1) has exactly one solution ¢(x,t) continuous in {a,b) xT,
given by the formula

o FLf™(x), 1]

() plest) = — w1 (@, 1)

M=

Proof. It is enough to prove that series (11) uniformly converges
in every interval {a, ¢) X (a, 8>, where a < ¢ < b and {a, ) < T, which
may be done quite similarly as in [3], p. 54, and thus we do not enter
into details here.

Remark 1. Theorems 1 and 2 are also true for the equation

(12) elf(@)] =g, ty, ..., L)e@)+F(z, &y, ..., 1,).
2. Solutions of class ' with respect to the parameter. The following
result is known (cf. [4]):

LEMMA. Let R be a convex region with respect to y,, ..., vy, in the space
of the variables (Xyy ..., %y, Y1y ---yY,) and let the function f(x,,...,z,,
Yiy oo-y Yn) be of class C7, p > 0, with respect to y,, ..., y, in R. Then there
exist n functions D (Byy ...y By Y1y vy Yny By o1 2n)y ¢ =1,2,...,n, of
class CP~' with respect 10 Yy, ...y Ypy 21y -+ 2, and such that

J@1y ooy @y 2ry ooy 2) —F(@ay ooy By Yay o0y Yn)
n
=2¢’i(~""'1’ ooy By Yry eeey Yny Ray oovy Zn) (25— 7).
iz

They are of the form

D (Lyy ey By Yry eovs Yny Rry evry Zy)

1
=ffi["‘v17 coey Dy y1+8(21—y1), Ty yn+s(zn_yn)]d8’
0

where

Of (B1y + -y Ty Y1y o5 Y
0y;

In the sequel we assume:

(vi) There exist the derivative dg(x, t)/0¢t continuous in {a, b)xT
and a locally bounded function B,(z,t) continuous with respect to the
variable ¢ and a constant 0 < 7, << b—a such that the inequalities
og

ot
hold in <{a,a+7%,) XT.

fi=

y t=1,2,...,mn.

(13) < B,(x,1), B,[f(2),t]< 0B,(z,1)
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(vii) There exist the derivative 0F/dt continuous in {a, b) X T and
a locally bounded function D,(z, t) continuous with respect to the variable ¢
and a constant 0 < g, < b—a such that the inequalities

(14) I‘a;; < Dy(z,1), D [f(»),1]< 6D,(z,?)

hold in {a, @+ ,) XT.
Now- we shall prove

THEOREM 3. Suppose that hypotheses (i)-(vii) are fulfilled and H, is
continuous with respect to t. If c(t) is function of class C* in T, then the
continuous solution ¢(z,t) of equation (1), fulfilling the condition ¢(a,1t)
= ¢(t) has the derivative Op|dt continuous in {a,b)xT.

Proof. On account of Theorem 1, there exists exactly one function
¢(z, t) satisfying equation (1), continuous in (&, b) xT' and fulfilling the
condition ¢(a,t) = c¢(f). Let teT be fixed and let Af vary over a compact
interval (r,, t,> such that te{t+,,?+7,) = T. The function ¢(z, t+ A4t)
satisfies the equation

(15) o[f(®), t+ 48] = g(@, t+A) (@, 1+ At)+F(z, t+ At).
By (15) and (1) we obtain
olf(@), 1+ At1—o[f(2), 1]
= g(z, t+At)p(z, t+At)—g(z, )p(x, t)+F(z, 1+ At)—F(z, t).
We write

f@ Y1, 9) = 9(2,91) 92 F(@,91,92) = Flw,9,),
Yo =1, Yy, =e¢lx,t), 2 =t+4t, z,=q@(z,i441).
Then
o[f(@), 1+ 4t1— p[f(2), t]
= f(®@, 21, 2:) —f(@, Y1, Y2) + ] (@, 215 22) = ] (2, Y1, ¥2)
and according to the lemma, we obtain

(16)  ¢[f(z), 1+ Ai]1—o[f(2), ]
= &, [p(x, t+A0) — ¢z, 1)]+D,- AL+, AL,
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where

B, = by(a,t, At) = [fi[@, 1+ 5(21— 1), Yo+ 5(2a—y:)]ds
0

I
O&l -

{p(z, )+ sp(z, t4- A1) —p(z, )]} g,(x, 1+ sdt)ds,

?,

1
By (@, 1, A1) = [fol®, Y1+ 8(22— Y1), Yot 8 (22— y2)1ds

I

1
fg(w,t+sAt)ds,
]

1
¥, = ¥,(z,, 41) = [ Fy(v, 1+34t)ds.
(1]

Let us write (¢! being fixed)
pla, t+At]—p(w, 1) = y(2, 41),
and then we obtain (according to (26))
(17) Y(f(z), At] = @, V(z, At)+ (D, +F,) 48,
or, for At # 0,

Y[f@), 4] _, (@ 40

(18) _ e 0P
Putting
Y(xz, At)
A;t = y(z, 4t),
we have
(19) y[f(z), At] = Py y(x, A1)+ D+ ,.

The function ¢(x,t) is continuous, whence it follows that the func-
tions &,, &,, ¥, are continuous with respect to  and Ai{. Next P,(a,t,
at) =1, and

1 1
8,—11 < [ lg(, t+5- A)—1|ds < [ Hy(w, 145 A)ds = H,(a, 4t)
[1] 1]

for zela, at17).
Suppose that a < d < a-+#,. Then

lp(z, )| < L in (@, d) X {T+7q t+75)
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and

1
(20) @y < [(L+2L8)lgf@, t-+s-At)|ds
0

1
< 3L [ By(, t+s- Atyds £ B, (=, At).
0
Next ‘
1 1
(21) |7,| = UF,ds|<fD1(m,t+s-At)ds = D, (z, A).
0 0

It is easily seen that

ﬁl[f(.w)i At < eﬁl(w’ At),
(22) B,(f(z), 4t] < 0B,(=, A1),
ﬁl[f(m)’ 4] < Bﬁl(m, 4t)

-

in a neighbourhood of the point a.
If 4t =0, let y(x) be the continuous solution of the equation

(23) rf(2)] = g(z, )y (2)+ (2, t) gi(z, )+ F,(, 1)
fulfilling the condition y(a) = ¢'(3).

According to Theorem 1 this solution exists and is unique. We shall
prove that the funection y(z, 4t), defined for 4t = 0 to be equal to y (=),
is continuous also for 4¢ = 0.

The functions @,, &, and ¥,, occurring as the coefficients in equa-
tion (19), are continuous for ze{a, b) and small A¢ with

Do(2,0) =g(x,1), Pi(w,0) =o(x,t)g,(z, 1),
¥i(z,0) = Fy(w,1).

In wiew of (24), equation (23) is the limit case of (19). Theorem 1
applied to equation (19) yields the continuity of ¥ (x, 4t) also for At = 0,
i.e., we have

(24)

lim 7’("’": At) = -}7(37),
At—0

or, what ammounts to the same
x, At
]im "P( ? )

a0 A1 = 7(@).
Next, from (18), passing to the limit as At — 0, we obtain
Op(fl@),t] Op(x, 1) dg(»,t)  OF(x,1)
(25) S = (@ ) (@, ) o

whence, again on account of Theorem 1, it follows that the function
Op(x, t)/0t is continuous in (a, b) X T, which was to be proved.
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THEOREM 4. Let hypotheses of Theorem 2 be fulfilled. If, moreover,
there exist the derivatives dg(x, t)/0t and OF (z, t)/0t continuous in {a, b) X T,
then the continuous solution ¢(x,t) of equalion (1) possesses the derivative
Op/0t continuous in (a,b) xT. _

The proof of the above theorem does not differ from that given
for Theorem 3 and is therefore omitted.

Remark 2. Theorems 3 and 4 are also true for equation (12).

3. Solutions of class 7,1 < p < oo, with respect to the parameter.
We assume:

(viii) There exist the derivatives &' F(z, t)/of and d'g(x, t)/0t",
t=1,2,...,p, continuous in <a, b) X7, and locally bounded funections
B;(z,t) and D,(x,t) continuous with respect to the variable ¢ and con-
stants 0 << 9, << b—a,0< g; < b—a such that the inequalities

(26) aﬁ_Fa(;"—t)lgpi($7t)7 D;[f(®),t] < 6D;(w, 1)
hold in <a,a+7;)xT, and

i
(27) P90 |\ < Bw,0, Bilf@), 1< 0Bi(o)

inda,a+ o) xXT,i =1,2,...,p.

Now we shall prove the following

THEOREM 5. Suppose that hypotheses (i)-(v) and (viii) are fulfilled
and H, is continuous with respect to t. If ¢(2) is a function of class CP in T,
then the comtinuous solution ¢(x,1) of equation (1), fulfilling the condition
@(a,t) = c¢(t) has the derivatives d'¢p(x,1)/0t, i =1,...,p, continuous in
{a,b)xT.

Proof. The proof will be by induction. For p =1 the theorem
follows from Theorem 3. Assuming its validity for an», 1 < r < p, we have

Tolf(z),t] Jglx,t)e=,?)] n 0'F(z,1)

FTa - or or
or
Foplf(2),t]  p(a,?) - (r) dg(x,1) O p(a,t)  OF(z,1)
ot =~ 7 (m’t)+§ i ot o=t * or
We put:
T . ,
r\ 0'g(z,t) 0" ‘e(x,t)
Dy(z, 1) = Z (,&) ati’ ) atr—'i, ’
9 i=1
( 8 @ 1) — arF(mat) (56 1) = ar(p(w, 1)
1z, ) =7 o a\Ty t) = mr :

Annales Polonici Mathematici XXIV 9
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According to (28), we obtain
(29) al[f(x),t] = g(z, )a(z, 1)+ Py(x, )+ ¥ (z, 1).
On account of relation (viii) for ¢+ =1,2,...,7+1, we obtain
oy, (x, 1)
‘ ‘E‘l‘at; ‘ < D,y (x, 1)
and

‘%‘ < 4,0 Bi(@, ) +...+ 4, () Byyi (@, 1)

for (a,a+0>XT, 0<< 9< b—a, where

' p(w, 1) | fr1
P e T
® (a,aiﬂ) o+t 1 ' y oo 1L
plz,?)
A,(f) =.sup W’— 7
{a,a+e>

aTe continuous in 7.
Finally, we have

0P,(=, 1) + 0% (z, 1)

o Py < Dy (2, ) +A4,(8) By (2, 1) +...

ot A, (1) By, (2, )

for (a, a+ o) X T and consequently the theorem follows from Theorem 3.

THEOREM 6. Let hypotheses of Theorem 2 be fulfilled. If, moreover,
there exist the derivatives d'F(x,1)/0t" and d'g(x,t)/0t, i =1,2,...,p,
1< p< oo, condinuous in {a, b) XT, then the continuous solution ¢(x,t)
of equation (1) possesses the derivatives d'¢(z,t)/d', i =1,2,...,p, con-
tinuous in {a,b)xT.

The proof is analogous to the proof of Theorem 5, and is therefore
omitted.

Rematrk 3. Theorems 5 and 6 are also true for equation (12).
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