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Differential operators of gradient type
associated with spherical harmonics

by ALEKSANDER STRASBURGER (Warszawa)

Abstract. The paper develops ideas of Stein and Weiss and Reimann concerning calculus of
differential operators of gradient type associated to spherical harmonics. In particular, com-
positions of these operators are calculated and intrinsically characterized. For M-invariant
differential operators acting on lunctions with values in the space of spherical harmonics the notion
ol the radial part is introduced in a functorial way resembling the construction of Helgason in the
scalar case. As applications new prools of certain classical identities involving spherical harmonics
are obtained, e.g. the Maxwell representation of spherical harmonics and its generalizations and
the identity of Hecke-Bochner.

Introduction. This paper is concerned with a certain class of partial
differential operators and its applications in euclidean harmonic analysis and
in the theory of special functions. It is also closely connected with the theory of
representations of the (special orthogonal) group SO(d) in that it essentially
relies on the representation-theoretic interpretation of spherical harmonics.
This class of operators, now called operators of gradient type, was singled out
in view of its remarkable invariance properties in the classical paper of Stein
and Weiss [20] and has recently received considerable attention in the works of
Ahlfors [1] and Reimann [17], [18]. In the context of the analysis on
symmetric spaces the analogs of these operators also play a significant role (cf.
[9] and the references there, and related papers of the present author [21],
[22]).

Here we develop some kind of explicit calculus for these operators in
pursuing the line of investigations started by Reimann [18]. To describe the
content of the paper in more detail let #' denote the space of harmonic
polynomial functions on R? homogeneous of degree I, and & (R% #") the space
of smooth functions on R¢ with values in #’. Any function ®e&(R?; #") can
be regarded as a function of two variables x, ze R4, and we shall write
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@(x, z) for $(x)(z), the value of H(x) at ze R®. The gradient type operators of
Stein and Weiss '

S,: E(R% H%)—> ERY AT
and their adjoints
S¥: E(R% #%) > ERY H*71)
are shown here to be related by the formula
V. ®(x, 2) = (S, P)(x, 2)+||z]|* (S D)(x, 2),

where V_ is the directional derivative and the decomposition (pointwise with
respect to x) on the right-hand side is the decomposition of a homogeneous
polynomial (in z) into its harmonic projection and the orthogonal complement.
Moreover, the composition S,-;,0...08, is shown to be given by

d(t)

Si-10...08,f (5, 9) = 3, KOS W%, fes@)

for any suitable basis {Y;} for the space #"'. Here, of course, P(0) is the
differential operator corresponding to a polynomial P. As a result one has for
any Pe#*

(D'f(x)] P)=P@)f(x)

where D' denotes a suitable scalar multiple of S, 0...08,; this comes as close
as possible to a factorization of P(d) into first order SO(d)-invariant differential
operators.

When this is further combined with an extension of the notion of the
radial part of a differential operator, which we introduce in Section 1 sum-
marizing the arguments of the forthcoming paper of the author [24], it leads,
somewhat surprisingly, to a new proof of an old and apparently forgotten
formula of Hobson (cf. [12], p. 126, (6)) on derivatives of radial functions (cf.
Proposition 3.1) and to its various applications which we give in Section 3.

These include a proof of the Hecke-Bochner formula and the theorem
stating that the Hermite—Weber functions are eigenfunctions of the Fourier
transform, a generalization to polyharmonic polynomials of the Maxwell
construction of spherical harmonics and some more. The proofs we give are as
simple and direct as possible. The rather intimidating amount of differentiation
needed for direct proofs of the mentioned results is now disposed of completely
with the use of the formula of Hobson. We get as a by-product a formula on
the Hermite polynomials in several variables which does not seem to appear in
the standard sources.

For more comments on the applications given here an interested reader
can refer to the beginning of Section 3 and for a comparison with another
recent presentation of some of these results to the course by Faraut [8].
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1. SO(d)-invariants and radial parts of invariant operators. Consider the
space R? with the inner product (:|*) and the corresponding norm ||| and let
S¢~! = R? be the unit sphere. Let M = SO(d), the special orthogonal group in
d dimensions, act on R? (on the left) in the usual way, and let M, denote the
stabilizer of the unit vector e,, {¢,} being the standard basis for R%. The map
Masm-—me, €S is used to identify the homogeneous space M/M, with
s4-1,

Let us briefly recall some basic facts concerning representations of class
1 of the group SO(d)—more details can be found e.g. in [2] or [3].

For any leZ,, Z, denoting the nonnegative integers, let 2! = 2¢(RY)
denote the space of complex-valued homogeneous polynomial functions of
degree | on R? and #' = #%(R? < #' the subspace of harmonic polynomial
functions. The formula

T'm)P(x):=P(m~'x), xeRY,

defines an irreducible representation T' of M on s#". The representations T are
mutually inequivalent and for each /e Z, the space # contains a unique (up
to a scalar factor) element which is invariant under the restriction of T to M.
Moreover, these are the only representations of M with that property. The
unique M,-invariant function in #' assuming the value 1 at the point e, is
denoted by Z' and is known to be given by

/2]
(1.1) Z'(x) = ), dixi”** x||*,
k=0

where the coefficients dj are

rd—-2)r{+d-2)2)
[(d=2/2)T(+d-2)’

1(=1)...(0—2k+1) ,
Pkl d+21—4)... (d+21—2k—2)

(cf. e.g. [25], Ch. IX, §3.1).

d = 2!

di = (= 1) k>0
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An M-invariant product on 2 is introduced by

(1.2a) (P1Q):= dI_ PB)Q(b)ao(b),

S

where by do(-) we denote the euclidean volume element on $*~! normalized by
f{do = 1. We shall also use the M-invariant bilinear form on 2’ defined by

(1.2b) [P, 01:=(P]Q).
Now set x = ||x|| me, and define
(13) | zZ4 = |x|'T'(m)Z"

Then with the notation d(/) = dim #' we have the well-known reproducing
property of Z..

LeMMA 1.1. If Pe ¥, then
(1.4) d(D[Z., P] = P(x), xeR4

Consider now the action of M on the space &(R?; 2#") of smooth
#'-valued functions on R’ defined by

md(x):= T'm)dm~'x), de&(R?; #,

and let &(R?; #)™ denote the subspace of M- invariant elements in &(R?; #”").
Clearly each ®e&(R?; »#')™ is determined by its restriction to the axis Re,;
moreover, for each teR, P(te,)e(#")* and hence P(te,)= ¢(t)Z' for some
(complex-valued) function ¢. By (1.4) we have

o(t):=d()[P(te,), 2],
and by M-invariance
(1.5) D(mte,) = @(t) T (m)Z".

Thus any M-invariant function from &(R?; #") is uniquely determined by
a complex-valued function on R, which is essentially its restriction to the axis
Re,. However, as we shall see (cf. (1.8) below), this restriction cannot be
completely arbitrary.

Let &, (R) denote the subspace of &(R) consisting of even functions
endowed with the subspace topology. It is classical ([26], see also [19] for
a detailed description of the topological part of this statement) that &, (R) is
isomorphic via the map f — ¢, where @(s):= f(s*/?), to the space &(R.) of all
smooth functions on the closed half line R, :=R, u{0}.

For the proof of the following result and its extension to distributions we
refer the reader to the forthcoming article of the author [24].

PROPOSITION 1.2. Assume d > 2 and let leZ .. For any fe & , (R) define an
H'-valued function 6"*f on R? by

(1.6) 6 f (x):= d()!'2 f (IIx]) Zs
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Then 0* fe &(R*; #'Y™ and the map
0% := &, (R)—> &(R%; )M
is a topological isomorphism with respect to the subspace topology. m

Now let {Y;} be a basis for # orthonormal with respect to [+, -] and such
that Y, is M,-invariant and hence Y, = d({)}/*Z'". Proposition 1.2 together with
the addition formula

d(l)

(1.7) d()Z'(x, 2) = Y Y(x)Yi(2)

implies that for any ®e&(R?; #')™ there exists fef,(R) such that the
coordinate functions of @ with respect to {Y,} are

(1.8) @,(x) = d()™ 12 f (|l x])) Y;(x).
This f is related to ¢ introduced above by
(1.9) o(t)=f()t, teR.

Remark 1. The description of M-invariant #'-valued continuous func-
tions on R? in the form (1.8) is due to Coifman and Weiss, see Theorem 6.6 of
[2]. The passage to the smooth case is obtained by noting that (1.9) is
a necessary and sufficient condition for the function @ defined by (1.5) to be
smooth.

Remark 2. The assumption d > 2 is necessary since we are working with
the group SO(d). However, if for d =2 one takes M = O(2) instead of
M = SO(2), then the above characterization of M-invariant functions remains
true.

If f is any function on R, then (1.6) may be used to define a unique
M-invariant function on R = R’—{0} which restricts on the half line R, to
the function t— ' f(£)Z'. (Here and whenever convenient in the sequel we shall
identify R with the axis Re, = R’) Abusing slightly notation we shall write

6™ f (x) = d()*"* f (Il Zx

for any function f defined on R, and note that also this map is an
isomorphism of &(R,) with &(R%; #HM,

In the case [ =0 we shall write 6* instead of 0°* Note that for any
S/, geé . (R) we have

0" (fg) = 6*(f)6™(g),
ie. the structure of an &(R%)*-module on &(R?; #")™ corresponds under the

map 6" to the pointwise multiplication in &, (R), cf. [16].
Let us now consider an M-invariant differential operator D: &(R% #)
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- &(R4, #*) with smooth coefficients; we recall that an operator is called
M-invariant if it commutes with the action of M. Clearly D maps &(R?; #)™
into £(R?; #/™ and hence yields a unique mapping, say ¢(D): & . (R)— &, (R),
sucH that

(L.10) DO*f = 6*o(D)f, feé.(R).
In other words, the diagram below commutes.
&(RY; #) 2 &(RY; #)

o't il
&, (R)—2 & (R)

Considering the diagram in the particular case of a scalar differential
operator (by that we mean an operator of type D: &(R%)— &(R")) one sees that
the definition of ¢(D) amounts to the familiar construction of the radial part of
a differential operator as described e.g. in [10], Ch. I, § 2. In fact, one sees easily
that with respect to the action of M on R the punctured axis R, satisfies the
transversality condition, hence there exists a unique differential operator 4(D)
on R, such that

(Df )y, = 4(D)(f1n)

for each locally invariant function on an open subset of R%. Recall that
a function f is called locally invariant if X* f = 0 for each vector field X on
R? induced by the action of M. The operator 4(D) is called the radial part of D.
Now, since D is assumed M-invariant it is easy to see that its radial part is even
(in an obvious sense) and hence DO* f = 6* A(D)f in agreement with (1.10).

Remark. The commutativity property of the diagram above may also
hold for other M-invariant operators than just the differential ones (perhaps
with an appropriate modification of the function spaces used). For example if
the operator D is replaced by the Fourier transform of s#'-valued functions and
the Schwartz spaces ¥ (R?; #') rather than &(R% ') are used, then the
diagram may serve as the definition of the Hankel transform (cf. eg. [11], Ch. §,
Th. 7 and Th. 7bis or [2], Th. 6.9). This provides the background for our
discussion of the Bochner-type identities in the last section of this paper.

In the remaining part of this section we shall sketch a simple, coor-
dinate-free description of the map ¢(D) in terms of a differential operator on R,
(usually singular at 0). However, it should be noted that (1.10) defines (D) on
even functions only and hence does not alone suffice to determine the
corresponding differential operator uniquely. Therefore we shall further require
that the differential operator itself be even, which determines it completely.

So assume D: &(R?; #')— &(R?; H#*) is an M-invariant differential oper-
ator with smooth coefficients. For any fe&(R,) the function 6*(f)
e&(R%; #" ™ and therefore

DO*(f)(te,) = d(k)*?h(t)t*Z*, teR,,
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for a unique smooth function h(-) on R, . Denoting the map sending f to h by
0+(D) we have

(1.11) ¢+(D)f(t) = d(k)'/>t"*[DO'*(f)(te,), 2], teR,,

which shows supp ¢, (D) f < supp f. Since obviously h(t) is smooth this implies
(Peetre’s theorem, cf. e.g. [14], 3.3.3) that g, (D) is a differential operator on R,
with smooth coefficients. In addition the order of g (D) does not exceed the
order of D. g, (D) can be extended in an obvious way to an even differential
operator on R, which we shall denote again by ¢(D) in anticipation of the next
result. Since under these conditions ¢(D) is uniquely determined we obtain the
first part of the following:

PROPOSITION 1.3. Let D: &(R?; #')—&(RY; #*) be an M-invariant
differential operator with smooth coefficients and let D, denote its restriction to
R%. Then

(i) there exists a unique differential operator o(D): £(R,j— &(R,) with
smooth coefficients on R, which is even and satisfies

(1.12) D,0*(f) = 8*¢.(D)f, feé(R.,),
where g, (D) = o(D)lg, ;
(ii) for each fe & . (R) the function o(D)(f r,) extends uniquely to a smooth

even function on R. The resulting map & ,(R)— & . (R) equals the map ¢(D)
determined by (1.10).

Proof. It remains to prove (i) Let fe& . (R) and let f, denote its
restriction to R, . Then clearly 8"*(f,) = 6"*(f)| gz~ Further, let us write h for
the function on R, equal to o(D)(f| n‘), o(D) being the differential operator from
(i), and h, for its restriction to R, ie. h (t) = g, (D) f,(t) for t > 0. Then by
(1.12) we have

0**(h,) = Do8"*(f.) = (D™ (f))|rs = 6** (2(D) f )| ne»
where in the rightmost term g(D) denotes the map & . (R)— &, (R) defined by
(1.10). Now applying (1.9) to both sides of this equality we get
teh(t) = t*(o(D) f)(¢) for all ¢ 0, showing that h is the restriction to R, of the
smooth function g(D)f. =

The differential operator ¢(D) on R, which is described in the above
proposition and sometimes also the related map o(D): &, (R)— &, (R), will be
called the radial part of D.

Let D,, D, be two differential operators as above and let their com-
position D,0D, be defined. Then (1.12) together with the uniqueness of g(D)
satisfying the requirements above implies

COROLLARY 1.4. o(D,0D,) = o(D,)oo(D,).

2. Calculus of harmonic gradients. Let & = 2.(RY) be the algebra of
complex-valued polynomial functions of R? and I its subalgebra consisting of
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polynomial functions in r?, where r?(x) = ||x|? is the square of the euclidean
norm. The group M acts on the left on 2 in the usual way (P— Pom™!) and
the isotypic decomposition of £ under the action of M is known to be

(2.1) P=Q@I1 #
1=0
This holds true in the case d = 2 as well, provided one replaces M = SO(2) by
the full orthogonal group M = O(2). Restricting this decomposition to the
subspace 2! of homogeneous polynomial functions of degree ! we have
/2]
(2.2) ‘@l — @ erI%pl—zk
k=0
and the decomposition is orthogonal with respect to the inner product (:|*) on
" defined in (1.2a). Thus the orthogonal projection H: #'— #", called the
harmonic projection, is seen to commute with the action of M.
By a standard construction to each polynomial Pe %" there corresponds
a differential operator P(0): #(R%)— & (R’ with constant coefficients, where
P(6)=Z|,|=,paa’ if P(x)=))=1p,x* with p,eC. We are using here the
multi-index notation, where |¢| =) {-,«; for a multi-index a = (x,...,q,)
eZ%, x*:=x3...x3 for a point x = (x,,...,x)€R? and

0%:= (0/0x,)™ -...-(0/0x,)*.
In this notation the operator V, of the directional derivative in the direction
zeR? is written as (z|0).

The following definition assigns an M-invariant differential operator of the
form

D: &(R)—-&(R%; V)
to any finite-dimensional M-invariant subspace V c 2.

DEFINITION., Given an M-invariant subspace V < #' (not necessarily
irreducible under M) let D¥: £(R%)— & (R, V) be a differential operator defined
as follows. For any fe&(R%) and any xeR? define DY f(x)e V as a (uniquely
determined) polynomial from ¥ such that

(2.3) (DYf(x)|P):= P(0)f(x), PeV.

It is easy to check that supp D" f < supp f'so that f — D" fis a differential
operator with smooth coefficients and order < I. Moreover, DY is M-invariant,
which is seen by recalling the well-known fact that the map

P x &(RY)3(P, f)— P(9) fe 8(RY)

is M-equivariant.
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The above definition will be used mainly in the case when ¥ = #* and in
this case the operator will be denoted simply by D'. We note that the defining
equality for D' can be stated as

(2.4) [D'f(x), P:=P@)f(x), Pesxt'

for any f € £(R%), where we are using the pairing [+, -] given by (1.2b) instead of
the inner product (1.2a).

In the notation of the Introduction, writing @(x, z) for &(x)(z), the value of
d(x)eH' at zeR?, where de&(RY; #'), we have the following expression
for D'.

LemMma 2.1. If Z!(z) = Z'(x, z) is the reproducing kernel for X', then

(2.5) D'f(x,z)=d()Z'd, 2) f(x), fe&(RY.

In particular, for any [-, -]-orthonormal basis {Y;} for #*
d(n)

(2.6) D'f(x,2) = _;1 Y0) fx)Y(z), fel(R).

The lemma follows immediately from the reproducing property of Z' (cf.
(1.4)) and the addition formula (1.7). »

In order to discuss the connection of the operators D' with the differential
operators of gradient type we need to recall the definition of the latter. The
general definition of Stein and Weiss [20] will, however, be confined to the
present context of class 1 representations of SO(d) (cf. also [18]).

If de£(R?Y; #), let Pd: R — L(RY, »#") denote its (full) derivative; by
complexification we can regard V® as having values in L(C?, #"). This latter
space will be identified with C?® #"' by means of the bilinear map

Cix #'>s(u, h)> T, e L(C?, #),
where we have set T, ,(v):= (v|@)h for he H' and ve C4, (-|-) being the standard
inner product in C% Thus we obtain the function, denoted again by

Riax—Vd(x)e C!® ", which is called the gradient of ¢. From the construc-
tion one sees easily that for any me M

P(md)(x) = RT'mPd(m 'x), xeR°,

where by R(-) we have denoted the representation of M on C? obtained by the
complexification of the standard matrix representation of M on R’

The well-known Clebsch~Gordan decomposition of R ® T' shows that the
representations of class 1 occurring in the decomposition of R@T' into
irreducibles are T'*!* and T' "' ifd > 4 and T'*!, T, T~ ' if d = 3, each with
multiplicity one. Letting E'*!, E'"! denote the orthogonal projections of
C?® o' onto the M-invariant subspaces carrying representations equivalent to
T'*1 T'"! resp., one defines operators S,, S} by

S, = E'*loV, SF=E"lop.
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Since the projections are applied pointwise and commute with M, S, and
Sk are first order M-invariant differential operators with constant coefficients.
However, in order to be able to regard S, and S} as unambiguously defined
maps

Si B(RY YR A, St ERY HY - ERY #'Y)

one has to fix an M-isomorphism of the respective subspace of C*® #" onto
H'tY or o'"1, By Schur's Lemma this results in an arbitrariness of
a numerical factor in the definition of those operators. We shall fix those
factors in the course of the proof of Proposition 2.2 below and subsequently
compare them with the choice made by Reimann [18]. In view of the
construction and further properties which will be established below it seems
appropriate to call S, the harmonic gradient and S, which was shown by
Reimann to be the formal adjoint to —S§,_,, the harmonic divergence.

The operators can be expressed by explicit formulas obtained previously
in [18] by means of rather lengthy tensor calculations. Here we shall simplify
both their expression and the derivation by relating them to the properties of
spherical harmonics.

First a remark on notation. If H: ' — 3" is the harmonic projection and
&: R¢> P, then in accordance with the notation introduced earlier we shall
write H, & (x, z) rather than Ho®(x, z) in order to remind the reader that the
projection H concerns only the variable ze R? and is evaluated pointwise with
respect to xeR%

PROPOSITION 2.2. With a suitable identification of the range of E'*! with
H'* 1 and of the range of E'~! with #"'~*, the operators S, and S¥ are given by

2.7 S,®(x, z) = H,((z| 9)®(x, 2)),
(2.8) SFO(x, 2) = |iz| “2U — H)((z} 9) B (x, 2)).

(Here I denotes the identity operator on #'* 1) In terms of coordinates this reads

(cf. [18])

0
(29 §,d(x,2)= sza d(x, z)— iT 21 2]] ||zjgla—zj-a;<b(x 2),

4 9 9
(2.10) SFrd(x, z) = 1322 21 26—5—— (x, 2).

Proof. Consider the multiplication map u: C!'®@ #'—>2'*! given by
po@P)(z) = (z|D)P(z), zeR’.

Since x commutes with the action of M, by Schur’s Lemma the decomposition
(2.2) shows u can be nonvanishing only on M-invariant subspaces carrying
representation equivalent to T'*! and T'~!. On the other hand, it is easy
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to observe that the image of u intersects nontrivially either one of the subspaces
#'*and r2 ' of ', Therefore if E'*?, E'! are the projections onto the
invariant subspaces of C‘® #' M-equivalent to 't #'~! resp., then
poE'*!, yoE'~! map isomorphically and M-equivariantly the range of E'*?,
E'"!, resp., onto #'*! and r*5#"' ! resp. We choose uoE'*! as the map giving
the identification of the range of E'*! with #'*! and notice that for the
harmonic projection H; 2'*! - #'*1 we get uoE'*! = Hop. Then

5,0(x, z) = poE'*Y(VPd(x, z)) = HopV P(x, z) = H,((z| ) D(x, z)).

Since
d 9
(z|9)B(x,2) = ), z7—P(x, 2)
=1 70x;

is of the form ) {-, z,P,;, where &,e £(R"; "), the stated coordinate éxpression
follows by observing that for any He#"

9
_ 2_—_
PTG L P

J

@2.11) H,(z,H) = 2;H

cf. e.g. Cor. 3.14 of [3].

In the case of S we shall make the identification of the range of the
projection E'"! in C!® s with r25#'~! by means of the map poE'~! and
subsequently identify the latter space with #'~! in the natural way. Thus

SFB(x, 2) = |zl "2poE' " (PB(x, 2)) = |z (2| ) B(x, ) H,((z| ) $(x, 2)).

The coordinate expression for SF follows immediately from this formula and
the coordinate expression for S;,. »

Remark. Our expression for S¥ differs from the one given by Reimann
([18], Proposition 8) by the factor (d+2I—2)/I. This is due to the use of the
integral inner product in &' given by (1.2a) instead of the differential one used
by Reimann. (Actually the construction of [18] rests on the use of the inner
product in the space S'(R?) of symmetric tensors on RY leading via the known
isomorphism of this latter space with 2'(R%) to the differential inner product in
this space.) However, this change of the factor of proportionality makes it
possible to retain the relation S = —(S,—,)* for the present choice of the inner
product as well.

We shall now state some recurrence relations satisfied by the kerels
Z'(x, z), which will be needed in the sequel. Their proofs are easy and are
omitted(*).

(*) Some of the proofs omitted here appear in the earlier version of this paper [23].

6 — Annpales Polonici Math, 53.2
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LemMa 2.3. For any x, zeR? and each leZ,
@12)  H,(z]92Z'x, 7))

! 2 271-1 — d+1-2 +1

(2.13) (z|0)Z'(x, 2) = I'|z|2 2" (x, 2). =

The meaning of the fact that the harmonic projection in formula (2.7) is
evaluated pointwise with respect to x is clarified by the following general
_observation. If P(x, z) is a polynomial function on R?x R homogeneous of
order k in either one of its variables, then developing P(x, z) = Y |4 =k P.(2) X%,
where p,e #* we have

= (z1%)Z'(x, 2)—

H.P(x,2)= ¥ (Hp))x"

la) =k
This implies in particular that for any fe&(R%) we have
H,(P(9, 2) f (x)) = (H.P)(©, 2) f (x)

where on the left-hand side the projection is applied to the polynomial
z— P(9, z) f (x) for any fixed x € R%. This observation is used in the proof of the
next result.

PROPOSITION 2.4. For any leZ

I+1
. 4 [ l+l.
(2.14) S,0D _—21+dD
Moreover,
(215) .Dl =C,S[—1O...OS0,
where

e=d(d+2)...(d+21-2)/I.
Proof By (2.7) and Lemma 2.1
S,0D' f(x, 2) = H,((z| 9)D' f (x, 2)) = d(1)H,((z] 8) Z'(z, d) f (x)).
Using the observations made just above and Lemma 2.3 we see that

d)  d+1-2
dI+1) d+2—-2

SIODI= D1+1_

Since
(d+1-3)!
(d-2

formula (2.14) follows. Noting that S, = D' we get the second one. m

d(l) = (d+21—2)
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Remark. The factor ¢, in (2.15) is just the proportionality factor between
the integral and the differential inner products in ¢,
PRrOPOSITION 2.5. For any leZ,

d+1-3

d+21—4

Proof. Let Pes'~* and fe&(R%). Then using (2.18) we obtain
1 & 9 d/d .

e TR P (a o, ) Z(ED 769 Z‘P)

since for Qe #', Pe#'~! we have

(ig‘ﬁ> = (d+21-2)(Q|zP),
0z,

(2.16) S¥oD' = D'"lod

(*) (StoD' f(x)| P) = — D' f(x)

which can easily be verified by the use of the divergence theorem. For any
x € R? we have (8/0x,) D' f (x) = D'(8/dx,) f (x)e #" and therefore the right-hand
side of (*) is equal to

d 0
) (”'a—x,f ®)

From (2.11) we get further

HP) = 3 HE PO =1 )

G 1 C K 4 )
and finally since any polynomial identity in £ is preservcd under the map
P — P(d), we have by the Euler relation

d+1 d+1—

PO ) = T (D o 4 (9 P m

COROLLARY 2.6 (cf. [18], Theorem, p. 745). If fe&(R%) satisfies Af = A f
with AeC, then

STOSz-l(DI_lf)=11—1'1)1—1)",

where
I(d+1-3) 1
(d+21-2)(d+21-4)

PROPOSITION 2.7. For any leZ _ the radial parts of the operators S, and
St are given by

Ay =

(217) e(S)=a ;7.
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(2.18) o(ST) = al_l‘(t—+d+21_—2),

where a, is given by

I+l A+ D)
M= rd \TdO)

Proof. We keep the notation introduced in the proof of Proposition 2.2
Recalling (1.6) we get for any fe& ,(R)

pVO™ f(x, 2) = (z|9)0™ f (x, 2) = d()** () B)(f (IxI) Z'(x, 2))

= dgy” ((z| ) G%f)(uxumx, 2+ (1x)(12)Z(x, z)).

By Lemma 2.3
d+1-2
! = 1+1 2 271-1
hence
d+1-2 [1d
1% - [+1 1% — 1/2 14 1+1
5,6%1 (x, 2) = poE"* 1ol 6"* f (x, 2) = d()* -5 +2l_2(t dtf)(llxll)Z (x, 2).

Using again (2.13) we get
§HO™f(x, 2) = ||z| "2 puoE' "oV 0™ f(x, 2)

! d
= d(l)”z d—m((ta+d+21—2)f)(||x||)2’" l(x, Z).

The proof is finished by observing that

d+1-2  d(l) _ 1+1
d+21—2 d(I+1) 20+d "

The following corollary is basic for the applications in the next section.

COROLLARY 2.8. For any leZ |

1dY
(2.19) o(DY) = d(I)*2 (?E) .
In particular, if He #"' and fe& . (R), then for F = 0* fe &(RY™M one has
(220 HOFe) = (1)1 000

Proof. Recalling F(x) = f(llx|}) and using (2.4) together with the defini-
tion of the radial part we obtain
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H(9)F(x) = [D'F(x), H] = [6"*(e(D") f)(x), H]

= d()*(e(D)N)IxNIT'm)Z', H] = d(1)~ *(e(D)/)(IxDH (),

where we have put x' = (1/| x||)x = me, with me M. Thus we are reduced to
proving (2.19), which follows by elementary calculations after combining (2.15)
with Corollary 1.4 and Proposition 2.7. =

3. Maxwell-Bochner type identities. In this section we deal with ap-
plications. Specifically, we shall discuss some of the classical identities related
to spherical harmonics. The prototype of these identities is Maxwell’s construc-
tion of spherical harmonics, which, roughly speaking, gives them as a result of
differentiation of the radial fundamental solution of the Laplacian (i.e. the point
potential). This construction was generalized by van der Pol [15] and Erdélyi
[6], cf. also [7], Vol. 2, Section 11.5.2, to the case of the Helmholtz equation
(4+k*)u = 0. The aim of this section is to disclose an intimate relation of those
identities to the representation-theoretic meaning of spherical harmonics, the
relation which gives, in our opinion at least, a deeper insight in the meaning of
those identities.

The first step in this direction was made by Coifman and Weiss (cf. [3], Ex.
4, p. 44 ff) who put Maxwell’s construction in the representation-theoretic
context and in particular related it to the harmonic projection of a polynomial.
This latter fact was previously established entirely in the framework of classical
analysis by Hobson (cf. [12]. p. 126 ff.), who derived it using an explicit
formula, also obtained by him, for differentiation of radial functions. We show
here how this formula can be obtained by using the decomposition (2.2)
together with the calculus of radial parts developed above, in which Corollary
2.8 is the key result. Using this formula of Hobson we subsequently obtain
a generalized form of Maxwell’s construction encompassing also the polyhar-
monic polynomials and the identities of van der Pol and Erdélyi. In the light of
the renewed interest in the constructions of Maxwell’s type and in Kelvin
transform (cf. Ch. VIII in [8] and references there), this derivation might be of
some interest.

Corollary 2.8 together with an elementary property of the Fourier
transform, (3.11) below, implies immediately the Hecke-Bochner identity and,
with some extra calculations, a (possibly new) proof of the theorem stating that
the Hermite—Weber functions are eigenfunctions of the Fourier transform.
Here again the decomposition (2.2) of ' plays an essential role.

ProOPOSITION 3.1 (Hobson). If fe &, (R), then for any Pe%"(R%)

. /2] . 1d\*-*k .
(3.1) P(9)0 f=k§0ﬁ0 ((?E) f)A P.

Proof. If P is harmonic then this is just Corollary 2.8. Otherwise we
decompose
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[n/2]
(3.2) P(x) = Z r2*H,_ (),

where H,_,; is harmonic and homogeneous of degree n—2k and setting
F =0*f we get

(2] (n/2]
(3.3) P@F = ), AH,-5)F = ), 4F H,-2),
k=0 k=0

where F, is the radial function given by

)

again by Corollary 2.8. Now, if G is a smooth radial function and H,e »#' then
essentially by Schur’s Lemma A4*(GH)) is again the product of H, with a radial
.function. The computation of the radial factor is well known (and trivial) for
k=1, and the general case is given (without proof, which is purely com-
putational) as Lemma 3.2 below. It is perhaps known, but the author was not
able to find it in the literature. In the special case k = 1 and G = r?” one has

(3.4) A(r**H) = 1,,r**"%H,,
where 4, = 2p(d+2(I+p—1)).

LEMMA 3.2. Let ge & (R), H,c ' and set G = 0*g. Further, let 1% denote
the differential operator

ld k+j
. t2
(3.5) JZoC” (tdt) )
where the coefficients cf; are given by
, ) -
| LA k>0
4=, k=j.
Then
(3.6) 4*(6*(g)H)) = 6*(Lig)H,.

Assuming the lemma we shall now finish the proof of the formula of

Hobson. Since
ld k+]
9* 21 *
Z cl 0 ((tdt) g)a

substituting (3.6) in (3.3) we get

[n/2] 1d\"" k+]
P(@)F Z H,, 2k Z C" 2k, 7 "0*(( ) f)

K= j= tdt



Differential operators of gradient type 177

Changing the summation order and setting m = k—j we obtain further

[n/2] 1d\""m [n/2]
= Z 9*((?5) f) Z C’r‘l—Zk.k-er(k—M)Hn—Zk-

m=0 k=m
However, it is easily checked by applying 4 m times to the decomposition (3.2)
and using (3.4) together with the expression for the coefficients cf; that

1 A™ a2l k 2(k—m)
M m) P=kz Cn—2kk-ml H, .,

m

3.7)

finishing the proof. =

Remark. It seems that the occurrence of formula (3.1) in Hobson’s
treatise [12] was overlooked in [3], cf. the note on p. 65 loc. cit.

Recall now that the Hermite polynomial associated with P e#" may be
defined by the formula (cf. e.g. [11])

Hp = (—3)"exp (r*yP(d)exp(—r?).
Hobson’s formula (3.1) immediately implies:

COROLLARY 3.3.

[v/2] 1 _
(3.8) Hp= Y (—1)t=g— 4*P.
Lt 2%

In particular, if Pe X" then H,=P. n

Formula (3.8) generalizes the well-known explicit representation of Her-
mite polynomials in one variable ([7], 10.13.9). For the case when P is
a monomial x* a formula equivalent to (3.8) occurs in [13], but the present
author does not know any reference where it is given for an arbitrary P,

The Hermite-Weber function associated to P is in turn given by

W = exp(r?/2) P(9)exp(—r?),
and one sees immediately that
(3.9) W = (—2)'Hpexp(~—r?/2).
Let the Fourier transform be defined by
Ff ) = 2n)~ " RId e f (x) dx.

Then from the previous results we deduee the following:

THEOREM 3.4. Let Pe?". Then
(3.10) F (Wp) = i"Wp.

The special case of (3.10) when P is in addition assumed to be harmonic is
called the Hecke (—Bochner) identity.
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Proof. The Hecke identity follows immediately from the elementary
property of the Fourier transform

(3.11) F(Pf)=(-)"P@)Z(f),
valid for any homogeneous polynomial P of degree n, the well-known equality
F (exp(—r*/2)) = exp(—1?/2),

and Corollary 2.8.
To prove the general case we shall follow the notation introduced in the
proof of Proposition 3.1. For Pe#" formulas (3.8) and (3.9) imply

[n/2]
FW)=(=2rY (- 1)"22,%' F (exp(—r2/2) 4* P).

k=0
On the other hand, using the decomposition (3.2) and formula (3.7) we can
write

[n/2] {n/2)
F(We) =(—-2) Z (—%)k ): cﬁ,_2,.,_,‘.97(r2“_")H,,_2,exp(~r2/2)).
k=0 1=k

By (3.11) and the Hecke identity
F(r**VH,_yexp(—r?/2)) = i"(— 1)* 4" *(H, -y exp (—r?/2)).

Now making use of Lemma 3.2 we see that

A H, -y exp (~1%/2)) = Z 1y =** ¢4, 12 Hy -y exp (—1%/2),

and therefore

(x)  F (W)
[n/2] -k

i"(—2)"exp(—r?/2) Z H,-2 Z — -2k ), (—I)H"C;_—kzz,jr”-
j=0
Rearranging the inner double sum we get
! 1=k

E Z( )I+J(_ n 20,1- kcn 211r2j

k=0j=0
1 I-J
— L 2 k .l -
=(-1) Z (_1)1,. d Z (—Ji) cn—ZLl*kcfz—kZl.j'
i=0 k=0
From the expression for c,; given in Lemma 3.2 we get

- 1 -
Cn—21,1-k Cn g = 2k (1 —j—k)! !I'I An=2tj+is
. =1




Differential operators of gradient type 179

and using the elementary identity
1

k
Z 9 5 = T
we see that the above double sum reduces to

' R =
(=" ga=— [ An-angsir®
Z 22(1 j)(l__J)! ;'1-;[1 2L,j+1

!
Z (—=1y [T Aw—zar®d™2.

ZP
p=0 2 ilp+1

Now substituting into (*) we see by comparison with (3.7) that the triple sum
there gives
(/21

l
Z H,_» Z (=1 zp [T Apeggir?t=o
p=0 2 i [-p+1
(n/2] 1 2 !
= 2 (-1 )p22P |Z( [T Au-20)r*¢ P H, 5 = Hp,

p=0 l=p i=l-p+1

which implies the theorem by comparing with (3.9). =

Now we turn to an application of the preceding formalism to the Maxwell
representation of spherical harmonics and related results. Consider first for
AeC the function r,(x):= r*~%(x) on RS and let K, be the generalized Kelvin
transform defined on &(RY), say, by

(3.12) K f():=r,(x)f (x/Ix]|?), xeRy,
the case A =2 being the ordinary Kelvin transform.

If Pe?"(R%) then a simple homogeneity count shows that
K,P(@)r,e?"(R% and a problem arises to describe the map

M"(2): #"(R)3P—K,P(d)r,eP"(RY).

In the classical (A = 2) case the image is precisely the space of spherical
harmonics and this is an essential part of the Maxwell representation theorem
(cf. [12], p. 127 ff, or [4], p. 514 ff).

THEOREM 3.5. The map
M(1): 2(RY)>P—K,P(0)r,e P(RY,
is an automorphism of vector spaces except when A or A—d is an even integer. For
the exceptional cases the following holds:

() If A=2p, peZ, and d is odd, then M(1) is an automorphism of the
space Ker A of p-harmonic polynomials and vanishes on its orthocomplement, the
space of polynomials divisible by r?’.

(i) If A and d are odd integers, and setting A—d = 2q,q€Z ., and letting I,
denote the space of M-invariant polynomials on R® of order < 2k, then M (1) is an
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automorphism of the space @ <,1,~,- 3" and vanishes on its orthocomplement
(cf. (2.1)).

(iii) If A = 2p and d = 2q with p, qe Z ., then M(4) is an automorphism of
the space Ker AN @ ,<q-ply-p-1° #"* and vanishes on its orthocomplement.

Proof. By virtue of the decomposition (2.1) it is enough to determine the
restriction of M () to each subspace of the form r2*#'. We are going to show
that

(3.13) M (D)l = c(4, k, DI,
where I is the identity operator and
c(A, k,1)=(A=2)...(A=2k)(A—d)...(A—d -2k —-2]+2).
In fact, for He #' we have (r*H)(d)r, = H(d)4*r,, and from
Ar, = (A=2)(A-4)...0—kbA—d)(A—d—-2)...(A—d =2k +2)r;_ 4,
and

!
(%%) tA 7472k = (A —d—2k)(A—d—2k—2)...(A—2k— 2]+ 2)pP "4 2k"2

we get by Corollary 2.8

("ZkH)(a)ra =c(A, k, Dry—s-2H.

The claim now follows immediately. by applying K, to both sides of the
equality.

One might observe that the irreducibility of the space r** #' alone implies
that the restriction of M (1) to that subspace is a multiple of the identity; this,
however, is not enough to establish the result, since one has to determine when
this constant is not zero.

The rest of the theorem follows by examining the cases when c(A, k, I) = 0.
For the connection with the polyharmonic polynomials one recalls the
orthogonal decompositions

P"(R*) = ker 42 N P"(RY) D r??P"~ 2°(RY),

p-1
ker AP nP"(RY) = @ r2kopn—2k,
k=0
The first one is a special case of a result on the decomposition of 2" given in
(5], p. 168, and the latter follows by combining the former with (2.2). We leave
the detailed verification of the statements in (i}(iii) to the interested reader. m

For the final example we want to compute P(9)G, where G is a radial
eigenfunction of the Laplacian on R4, ie. G = 0*g with ge£(R,) and

(3.14) 4G+22G =0
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for some AeR,. By the change of variables x — Ax we may (and shall) assume
that A =1 in (3.14). Then one knows that setting a = (d—2)/2 the function
h(t) = t®g(t) turns out to be a solution of the Bessel equation of order «,

2 1 d 2
(3.15) [:H“L?EJ“( -5 ﬂ h() =

Thus h is a combination of any pair of independent standard solutions of the
Bessel equation, by which we mean here the Bessel functions of the first, second
or third kind (cf. [7], 7.2.1). For our purpose it is sufficient to consider the case
when h equals one of these. Note that only when & is a multiple of the Bessel
function J,_ the function g(t) =t~ %h(t) extends to a smooth even function on
R and the corresponding eigenfunction G = 6*g is (defined and) smooth on the
whole R, otherwise on RY only.

Letting Z, denote any of those standard Bessel functions and using the
recurrence relation

14Y
(3.16) (td ) tZ,(t) = (=1t Z,4(0)
together with Proposition 3.1 we immediately obtain

COROLLARY 3.6. Let a =(d—2)/2 and let Z, denote any of the standard
Bessel functions of order o. For any peZ, let Z,,, be the Bessel function
determined from (3.16) and .G, = 6*(t™*"?- Z,, ;). (Note G, = G is the solution
of (3'14) corresponding to Z,.) Then for any polynomial Pe2"(R%)

/2]
(3.17) P(0)G(x) =(—1) Z (— 1)k2"k'
and in particular for harmonic P
(3.18) P(0)G(x) =(—1)"G,(x) P(x).

The case considered in [15] corresponds to P = Z" (and d = 3). From (1.1)
one gets using (3.14) with A =1,

[n/2] g \" 2
ZM(—id)G(x) = Zd"(—i—) G(x).

On the other hand, recalling that

[n/2]
Y. ditr ™ = CR1) T G,
k=0

n—k(x) ) AkP(x):

where C;(+) denotes the Gegenbauer polynomial of degree n and index o ([25],
Ch. IX, §3.1) one immediately obtains from (3.18) the formula found by van*der
Pol in [15]

(3.19) c:<—ii) G(x) = (= 1) (" G,)(X) c(%‘-)

0x4
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Similarly writing Pes#" in the form
- a—~m xl
Px)=r""Cim - Pi(xy, ...,x),

where P, is a harmonic polynomial in the d—1 variables x,, ...,x;, homo-
geneous of degree m ([25], Ch. IX, §3.5) and reasoning as above one can obtain
the formula found (for d = 3) by Erdélyi ([6], cf. also [7], 11.5.32)

a-m| . O . 0 . 0
C,,_m(—lgxﬁ;)Pl('—léz, caey —laXd)G(X)

= (- 1)"(r"G,)(x)c::m(?>P1 (’i "—)

r r

Remark. As pointed out to the author by Prof. T. Koornwinder one can
derive (3.18), and hence also the formulas of van der Pol and Erdélyi for the
case when G is given by the Bessel function J,, directly from another Bochner
type formula:

(3.20) " F(a+1): 2 PG, (x) = | €= P(y)da(y),

§d-~1

valid for any Pe 5" (cf. e.g. [8], Ch. II), simply by use of (3.11). On the other
hand, exactly the same arguments as those used above in the proof of the
Hecke formula together with the recurrence (3.16) allow us to obtain (3.20) for
an arbitrary harmonic P from the particular case P = 1, which is just the
Poisson integral representation formula for the Bessel function J,. In fact, the
Bochner identity and even its generalization can also be derived this way
(cf. a forthcoming paper of the author).
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