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Miller [7] studied weak product decompositions of graphs and proved
the following theorem:

(*) Any connected non-oriented graph without multiple edges is a weak
product of irreducible graphs.

In [6] weak products of lattices were dealt with and as an appli-
cation there was given a partial solution of a Birkhoff’s problem (cf.
[1], Problem 8) concerning non-oriented graphs of discrete lattices.

Let P be a partially ordered set. P is called irreducible if it cannot
be represented as a non-trivial direct product. P is discrete if every bounded
chain of P is finite. If for any pair a, be P, with a < b, there is a finite
sequence @, = @, @,,...,a, = b such that a@; , <a; and each interval
[a;_,, a;] i8 irreducible (¢ = 1, ..., n), then P is said to be almost discrete.

In this note we prove the following assertion:

(%*) Every almost discrete connected partially ordered set is a weak
product of irreducible partially ordered sets.

Further, we show that if @ is a partially ordered group such that
the corresponding partially ordered set is connected and almost discrete,
then @ is a restricted direct product of irreducible partially ordered groups.

Since each discrete partially ordered set is almost discrete, we infer
from (**) that

(*xx) Every discrete connected partially ordered set is a weak product
of irreducible partially ordered sets.

To any discrete partially ordered set P there corresponds, in a natural
way, a non-oriented graph G(P): the vertices of G(P) are the elements
of P; two elements a, b P are joined by an edge in G (P) if and only if either
a covers b or a is covered by b in P.

Let us remark that (**#) is not implied by the result of Miller, because
in general there does not exist a one-to-one correspondence between the
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weak product decompositions of G(P) and the weak product decompo-
sitions of P (cf. 4.6).

We shall use the standard notations for partially ordered sets and
partially ordered groups (cf. Birkhoff [1] and Fuchs [2]). A partially
ordered set P is said to be connected if, for any a, be P, there are elements
Ggy ...y e P such that a, = a, a, = b and the elements a; ,,a; are
comparable (¢ =1,...,n). Let a,be P, a < b. The interval [a, b] is the
set {xreP: a <x<b}. If a is the least element of P and [a, b] = {a, b},
a < b, then b is an atom of P; we call P an atomic partially ordered set
if P has the least element and if, for each xe¢ P, there is an atom b of P
such that b < «. Let u,ve P; if the least upper bound of the set {u, v}
does exist in P, then we denote it by u v v. The meaning of a A b is anal-
ogous.

1. Direct factors of a partially ordered set. In the whole paper it is
assumed that P is a connected partially ordered set. In this section there
are collected some notions and auxiliary results on direct decompositions
of P containing two factors, which we shall need in Sections 2 and 3.

Let A and B be partially ordered sets. The (exterior) direct product
A X B is the set of all pairs (@, b) with ae A and be B, the partial order
on A x B being defined by the rule (a,, b,)-< (a,, b,) if @, < a, and b, < b,.
A direct product A x B is trivial if either card A =1 or card B = 1.

Let A,, A, =« P, xye P, and A,NA, = {x,}. Suppose that there are
mappings ¢, of the set P onto 4; (¢« = 1, 2) such that

(i) 2ed; = g, (2) =,

(i) ze Ay, ye Ay = 1(y) = @y = @2(2),

(iii) the mapping ¢: @ — (,(«), ¢,()) is an isomorphism of P onto
A, xA,.

Then we write P = [A, X A,]. Partially ordered sets 4, and A4,
are said to be direct factors of P with respect to the element z,, and P
is an interior direct product of A, and A,. If, for ze P, ¢,(x) = ,,
then, by (i) and (ii), ¢(2) = (¢.(®), #,) = @(g:(2)), and so, according to
(iii), « = @,(x); thus xe A,. Analogously, ¢,(y) = z, implies ye 4,.

Let y be an isomorphism of P onto A X B and zye¢ P. If x¢ P and
y(x) = (a, b), we write ¢(x) = a and ¢3(x) = b.

Let

A, = {zec P: ¢2(2) = ¢3(20)},
A, = {ze P: ¢)(2) = ¢}(®0)}-

Further, let ¢;(x) be an element of A4, such that ¢f(p; (7)) = ¢}(z)

for ¢ =1, 2. It is easy to verify that conditions (i)-(iii) are fulfilled, and

thus P = [4, x 4,]. Moreover, A, (4,) is isomorphic to A (B). Therefore,
it suffices to consider only internal decompositions.
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Agsume that there are given two direct decompositions
1) P =[4,x4,],
(2) P = [B, X B,]

with respect to the element xz,. Corresponding mappings, for the direct
decomposition (2), will be denoted by y,, v, and y. Let # (x,) be the system
of all direct factors of P with respect to x,; & (z,) is partially ordered
by the inclusion. Obviously, P = [P x {x,}], and so P and {x,} are the
greatest and the least elements of % (x,), respectively.

Isomorphisms of direct products of partially ordered sets were inves-
tigated in [4]. Let us remark that if X, and Y, are subsets of P with
card(X,NnY,) = 1andif P isisomorphic with X, x Y,,thenP = [X, X Y,]
need not hold.

Example. Let X = Y be the set of all reals with the natural order,
and P=XxY. Put X, ={,0eP: —1<ax<l}, Y, ={0,y)eP:
—1 < y < 1}. Clearly, P is isomorphic with X, x Y,, X;nY, = {(0, 0)}
and P # [X,x Y,].

For z,yeP we put = =y(R,) if @,(2) = ¢,(y), and & = y(R,) if
¢.(x) = @,(y). Relations R, and R, are defined analogously (with v,, v,
instead of ¢,, @,).

1.1. R, and R, are equivalence relations on the set P. For any v, ye P
there are uniquelly determined elements u, ve P with

(3) © =u(R,), u=y(R,),
(4) v =v(Ry), v=y(Ry.

If x =y(R,) and x = y(R,), then x =y. Moreover, if y = x,, then
v = @,(2) and © = @,(x).
This is an immediate consequence of the definition of R, and R,.
The following lemma follows immediately from Lemma 2 in [4]:
- 1.2. If (3) is valid and z = y(R,), then u = z(R)).
1.3. Let z,ye P be such that = y(R,), and © = y(R,). Then there

are elements Zq, ..., L e P such that, for zo =z and z, =y, z; = v(R,),
x; = x(R)) and x;,_, is comparable with x;, ¢ =1,...,n.

Proof. Since P is connected, there are elements z,, ..., 2, such that
2, = « and 2, = y, and the elements 2;_,, 2; are comparable for ¢ =1, ..., n.
Further, there are elements w,, ..., w, with ¢,(w;) = ¢,(2;) and ¢@,(2)
= @o(x), + =0,1,...,n.

According to (iii), the elements w,_,, w; are comparable (: =1, ..., n),

w, = z, and w, = y. Clearly,

(5) w; = 2(R,).
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There exist xy, ..., z,¢ P such that

(6) (@) = pi(w;)  and  py(x;) = (@)
(¢t =1,...,m).

By the comparability of w,_,, w;, we infer that the elements xz;_,, «;
are also comparable. By (6) we have

(7) w; = z;(R;)) and a; =a(R)).

According to 1.2, we infer, from (5) and (7), that 2; = «(R,). The
proof is complete.

14. Let z,y,ue P, u<z, u<y, and assume that (3) is valid. Then
U =TAY.

Proof. Let u ¢ P, u; < 2, and u, < y. We have ¢, (4;) < ¢,(%) = ¢,(u)
and ¢,(%,) < @3(%) = @y(u), and so u, < u. Hence u = 2 A .

1.5. Let elements x, y, ue P satisfy the same conditions as in 1.4 and
let ve P fulfil (4). Then v =2V y. '

Proof. From (3), (4) and «» <y it follows that ¢,(x) = ¢,(v) and
@o(7) = @o(u) < @o(y) = @,(v), whence =< v. Analogously, y <v. Ac-
cording to 1.4, by duality, we obtain zvy = ».

1.6. Let 2,9y, u,ve P, x <y, and assume that (3) and (4) hold. Then
T =uAv and Yy =uvo.

Proof. We have ¢,(r) < ¢;(y) = ¢1(u) and ¢@,(z) = @y(u). Thus
z < w and, similarly, # < ». Therefore, by (3), (4), 1.5 and 1.4, we obtain
uAv =x and uvo = 9.

1.7. Under the same assumptions as in 1.6, let v,e P be. such that
UAY, =« and uv v, =9y. Then v, = 0.

Proof. Clearly,

P1(v1) < @1(y) = @1(%),
C@a(u) = @a(2) < @a(0y).

Therefore, in the partially ordered set 4, x 4,, we have

(‘Pl(“)’ ‘Pz(“))/\(‘h("h)’ <P2(Q’1)) = (‘P1("71_)7 ‘Pz‘(w))-

Since wA v, =, we obtain ¢,(v;) = ¢,(x) = ¢,(v). Analogously,
®2(v1) = @2(y) = @(v). Hence v, = v.

1.8. Let z,y, ue P be such that the elements x, w are comparable and
the elements y, w are comparable. Assume that (3) holds. Then there exists
ve P such that whenever x = u(R,) and u = y(R), then x = v(R;) and
v = y(R)). Moreover, if u<w, u<y (U=, wu>=7y), then v =xVvy
v =2Ay). If c<u<y (ys<u<wz), then v i8 the (unique) relative
complement of w in the interval with the end points x and y.
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This follows from 1.4, 1.5 and 1.7.

1.9. Let x, y, ue P, ¢;,(x) = ¢,(y) and xAy = u. Then ¢,(u) = ¢,(x).
Proof. There is w,e P with ¢,(4;) = ¢,(x) and ¢,(u,) = @,(u).
Clearly, ¢,(u) < ¢,(x), thus « < u,, u, <o, and u, < y. This shows that

% = u,, and, therefore, ¢,(u) = ¢,(x).

For any two equivalences T'; and T, on P we write x =y(T,A T,)
if © =y(T,) and © = y(T,).

1.10. Let y,z,teP. If y =2(RB,A R)) and y = t(R,A R;), then there
is we P such that w = z(R,A R;) and w = t(R,A R)).

Proof. If y =2 or y =1, the assertion is obvious. Let z %y #t.
Then, by 1.3, there are elements 2g,...,2,, Yoy ..., Ype P with z, = 2,
2, =Y = Yo, Y = t and such that 2;_,, 2; are comparable for ¢ =1, ..., n,
Yj_1, Y; are comparable for j =1,...,m, and

2; =2(R,AR)) fori=0,...,n,
Y; =y(B;aAR;) for j=0,...,m.

Consider the elements z,_,,¥,y,. Since the elements 2z, _,,y are
comparable and v, y, are comparable, there is, according to 1.8, v, P
such that theelements v,,2,_, are comparable, the elements v,, y, are
comparable, and

zn——l = 'Un(-Rzl\ R;))
v, = y1(B,A R)).

After n—1 analogous steps we get elements vy, v, ..., v, such that
v, = 2, the elements v;_,, v; are comparable for ¢ =1, ..., n, and

v = v,(Ry A Ry),
v,y =0v;(B,AR) fori=2,...,n.

Now, by using induction with respect to n+m, we infer that there
is we P such that v, = w(R,A R;) and w = t(R, A R)).
Hence z = w(R,A R;) and w = (B, A R)).
1.11. ¢, (p,(2)) = y1(@:(®)) for any weP.
Proof. Let ze¢P. Put ¢,(x) = y. There are elements z,te P such
that
y=tR), t=ukR),

y =2(R), & =ua(R).

According to 1.2, we have y = {(R,) and y = 2(R,). Thus, by 1.10,
there is ve P satisfying z = v(R,A R}) and t = v(R, A R)).
Hence z, = v(R)), v = «(R,) and, therefore, v = y, ().

2 — Collogquium Mathematicum XXV.2
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Further, we have ¢,(v) =2z and y,(y) = 2. Thus ¢,(v) = y,(2), and
80 ‘Pl(’l’l(w)) = W1(¢1($))-

1.12. If A, = B,, then A, = B, and ¢,(x) = p,(x) for any xe P.

Proof. For any ¢ P we have ¢,(x)e A, = B,. Therefore, according
to (i), ‘Pl(%(w)) = ¢,(#) and, similarly, ‘7’1(’#’1(‘”)) = y;(v). Thus, with
respect to 1.11, ¢(x) = y,(x). Since 4, = {reP: ¢,(r) = x,} and B,
= {xe P: y,(x) = x,}, we infer that 4, = B,.

We have shown that, if the element x, is kept fixed, ¢,(2) is uniquely
determined by A, and x; with respect to this we write ¢,(x) = x(4,).
Further, we denote A, = A*, R, = R(4), R, = R(A*). For any X c P
and Ae%F (x,) we write X(A4) = {«(4): ve X}. If A, BeF(x,), We write
X (A)(B) instead of (X (4))(B). Now we may express 1.11 in the following
form:

1.13. z(A)(B) = #(B)(4) for any xe P and any A, BeF (x,).

1.14. A(B) = ANB for any A, BeF (x,).

Proof. If x¢ A NB, then = x(B)e A(B). Conversely, let x¢ A(B).
Clearly, z< B. There is ae A such that a(B) = x. According to 1.13,
a(B) = a(A)(B) = a(B)(Ad)e A, and thus x¢ A NB.

1.15. Assume that (1) and (2) are valid. Then A, = [(A,n B,;) X
X (4,NBy)], ®(A,NB,) = 2(B,) and x(A,NB,) = x(B,) for any xe A,.

Proof. Obviously, (4,NB;)N(4,NB,) = {r,}. Let xe 4,. By 1.14,
x(B,)e A,nB; and z(B,;)e A, NB,. We have to verify whether partial
mappings (y1)a,, (¥2)a,s Y4, fulfil conditions (i), (ii) and (iii) if P, 4,, 4,
are replaced by 4,, A, "B,, A, N B,, respectively. Now (i) and (ii) easily
follow from the fact that v, and v, satisfy these conditions with respect
to P, B,, B,. Since y is an isomorphism, it only remains to verify whether
the partial map 4 : A, > (A;,NnB,)x(A;NnB,) is onto. Let b,e A, N B,
and b,e A, NB,. There is x¢ P such that y,(x) = b, and y,(x) = b,.
Consequently, x = b,(R;), # = b,(R;) and b, ==z, = by(R,), whence,
according to 1.2, ¥ = x,(R,). Hence xe 4,. Clearly, v(x) = (b,, b,). The
proof is complete.

Assume that (1) holds and that X <« 4,, Y <« 4, and e X NY.
Let Z be the set of all ze P such that 2(4,)e X and z(4,)e Y. It is easy
to verify that Z = [X x Y], 2(X) =2(4,) and 2(Y) = 2(4,) for any
zeZ. Put A,nB, =C,,A,NnB, =C, and let D be the set of all de P
with d(A4,)e C,. Then we have

1.16. D = [C, X 4,], (Cs) = ¢,(x) and x(A,) = ¢(x) for each xe D.

By an argument similar to that in the proof of 1.15 (i.e., by checking
conditions (i), (ii) and (iii)) the following assertion can easily be verified:

1.17. P = [C, X D] and x(C,) = y,(p:(®)) for any zeP. The element
x(D) = ye D is defined by y(Cp) = 17/’2(‘1?71(-’17)) and y(A4,) = @u(x).
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From 1.16 and 1.17 it follows that 4, NB,e¢# (x,) whenever A4,
and B, belong to # (x,) and that the direct product is associative in the
sense that P = [[C; x 03] X 4;] implies P = [C; X [C; x 4,]] (and con-
versely, since, clearly, [A, X A,] = [4,X A,]); therefore we can write
P =[0,xC,x A,] and, analogously, for any finite number of factors.

Under the denotations as above we have

1.18. If Be % (x,), then B(A,) = [B(C,) x B(0,)].

Proof. From A, =[C,xC,] and B(A4,) = A, we obtain B(4,)
< [B(4,)(Cy) X B(4,)(C,)]. Let e [B(4,)(C,) X B(4,)(C,)]. Then ze A,
and y,(x) = uwe B(4,)(C;) = BNA,NC, = BNC;, yy(2) = ve B(4,)(C,)
=BnA,nC, = BNnC,. Hence z = u(R;), # = v(R;) and u = x,
= ’U(R(B))

Therefore, according to 1.2, # = u(R(B)), so xeB. Thus ze BN4,
= B(4,). By summarizing,

B(4,) = [B(4,)(C,) X B(4,)(C,)] = [B(C,) X B(Cy)].

By induction, from 1.18 we get
119. If P =[C,xCy X ... XC,] and BeF (x,), then

B([CyX ... XxC,_y]) =[B(C,) X ... XxB(C,_1)].

Let M, and M, be distinct elements of & (x,). Assume that M,, M,
are irreducible and that M, # {x,} # M,. Then X = M, n M, belongs
to #(x,) and X # M,;, ¢ = 1,2. Hence X = {x,}.

1.20. Let M,, ..., M, be distinct elements of F(x,), and M,; +# {x.}
for i =1,..., k. If each M; is irreducible, then P can be expressed in the
form P =[M,x Myx ... X M,xC,], where C;, = Min... n My.

Proof. For k = 1 we have P = [ M, x M}]. Suppose that P = [M, X
X oo XMp_%xCp_y]and C,_, = Mi ... 0" My_,. Put [M;x...xM;_,]
= A. Then from P = [M, x M;] we obtain (by using 1.19)

M (A) = [M (M) X ... X M}(My_1)] = {2},
since M, (M;) = M, N M; = {x,} for : =1,..., k—1. Thus
M, = [M(A) X M (C,_1)] = My(Cy_,) = M;;NC)._,4

and
Cro1 = [Cr_1(My) X Ck—l(MZ)] = [(Cr_1 N M) X (Cr_y N M})]
= [kaok].
This implies that P = [M; X ... X M;,_; X M; X C;].

2. Irreducible intervals of P. Throughout Section 2 it is supposed
that P is a connected almost discrete partially ordered set with card P > 1.
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We denote by £ the set of all irreducible intervals of P containing more .
than one element.

2.1. Let (1) be fulfilled and let X = [u, v] be an interval of P. Then
the mapping ¢: @ — (py(®), @o(x)) for we X is an isomorphism of X onto
X(A4,)x X (4,).

Proof. For any subset X — P the mapping ¢ is an isomorphism of X
into X(4,)x X(4,). Let (a,,a,)e X(A,) X X(A,). There is ye P with
@(y) = (ay, a;). Clearly, ¢(u)(p(v)) is the least element (the greatest
element) of X (4,) X X(A4,);thusye[u,v]. Hence ¢ ([%,v]) = X (4;) X X(4,).

Let X be an interval of P and A % (z,). If X(A*) is a one-element
set, then X will be said to be parallel to A and we write X||A. From 2.1
it follows:

2.2, If AeF (m,) and X e P, then either X||A or X||A*. Moreover,
X||A if and only if the mapping x — ¢,(x) i8 an isomorphism of X into A.

23. Let p = [z,y)e P, AeF(x,), BeF(xy), plld, and p|B. Then
pllA NB.

Proof. Assume (to the contrary) that p is not parallel to 4 NB.
Then, according to 2.2, p|(4 NB)*; thus (4 NB) = y(4A NB). In view
of 1.16, we have #(A)(B) = y(4)(B), therefore [z(4), y(A)]|B*. Moreover,
from p|lA we obtain z(4) <y(4), so x(4)(B*) < y(4)(B*), whence,
by 1.13, z(B*)(4) < y(B*)(4). But x(B*) = y(B*), since p|B, and so
z(B*)(A) = y(B*)(4). A contradiction.

Let z,ye P, A = {ay,a4,...,a,} <P, ay =2, and a, = y. Assume
that a,_,, a; are comparable and that the interval with the end points
a;_,, a;is irreducible for ¢ = 1, ..., n. Then A is said to be a line of length »

connecting # and y. Let # # y and let d(z, y) be the minimal length of
lines connecting = and y; if d(x, y) = n, A is said to be a minimal line
connecting # and y. A line A is simple if a;,_, # a, for 1 =1,..., n. For
any line A connecting distinct elements x and y there is a simple line
A° ¢ A connecting # and y. Any minimal line connecting distinct ele-
ments is simple.

2.4. Let A, = {ag, ..., a,} be a minimal line connecting x and y. If
AeF (x,) and z(A) = y(4), then a,(4) = x(A) for i =1,...,n.

Proof. There are elements b,¢ P such that b;(4) = x(A4), and b;(4")
= a,(A*) for ¢ = 1,...,n. Then b, = @, b, = y and the elements b,_,, b;
are comparable. Let p; (¢q;) be the interval with the end points a, ,, a;
(b;_1, b;). In view of 2.2, since p, is irreducible, either cardg; = 1 or ¢;
is isomorphic to p,;, and thus g, is also irreducible. Therefore, B = {b,, ..., b,}
is a line connecting # and y. Since A, is minimal, we have d(x, ) = n
and from this we get B, = B. Hence b, , # b, for i« = 1,..., n, and now
it follows from 2.2 that a; ;(4) = a;(4) for + =1, ..., n.
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Let p be a fixed element of #. By # (x,, p) we denote the set of all
A e F (x,) such that p is paralell to A. Assume that p,, p,e# and let
x, w (y,v) be the end points of the interval p, (p,).

2.5. Let © = u(R(A)) for each AeF (x,,p) and w =y(R(A4])) for
some Ao F (5, ). Then there is ve P such that x =v(R(4;)) and v = y (R (4))
for each AeF (z,,p).

Proof. First consider the case where u <z and % < y. Since (3)
is valid for A = A4y, v = xVv ye P, by 1.8, and v satisfies (4) for 4 = A4,.
Let A% (zy, p), A #* A,. If u # y(R(A)), then ([u, v] being an element
of #) u = y(R(4")), and thus the argument applied for 4, remains valid
for A; therefore (4) holds. If u = y(R(A)), then, according to the dual
shape of 1.9, v = y(R(4)). Hence v = y(R(A)) for each A eF(z,,p).

In the case where w >« and u >y, the proof is dual to that given
above.

Let # < u < v. According to 1.8, the element % has a unique relative
complement » in the interval [z, y] and v satisfies (4) for 4 = A4,. Let
AeZF (2g, p). If u =y(R(4)) does not hold, then u = y(R(4") and (4)
holds for 4. And if u =y (R(4)), then « = y(R(4)), and this implies
y= ’I)(R(.A)), since [v,y] < [z, y].

The case > u > v is dual.

2.6. Let z,y,u,ve P be such that (3) and (4) are valid, u <y and
[u,yle . Then x <v and [z, v]e 2.

Proof. In the isomorphism P — 4 x A* described in Section 1 we
have

(8) u — (u(4), u(4"),

(9) y > (y(4), y(4%) = (u(4), y(4%),
(10) @ — (@w(4), 2(4") = (#(4), u(4")),
(11) v —> (v(4),v(4%) = (#(4), y(A* ).

From (8), (9) and from u < y we infer that u(4*) < y(4*) and that
thé intervals [w,y] and [u(A*), y(4*)] are isomorphic. Combining this
with (10) and (11) we infer that = < v, [u, ¥] and [2, v] are isomorphic.
Thus [z, v]e 2.

2.7. If assumptions of 2.5 are valid, and ¢, and q, are the intervals
with the end points z, v and vy, v, respectively, then q,, gz 2.

This follows from 2.5 and 2.6.

Let ze P, & # x,. Since P is connected and almost discrete, there
is a simple line A = {a,, ..., a,} connecting xz, and x. Let p; be the interval
with the end points a;_,, a;.

We denote P, = {py, ..., D}y P1= {p1ePy: a;,_, = a;(R(A)) for each
A e F(2y, p)}, and P, = P\ P,.



186 J. JAKUBIK

If P, = {py, ..., Py}, then there are A;eF (x4, p) such that a;,
= a; (R(A,)) Therefore a;_, = a,(R(4 o)) Where Ay =4; 04,0
nA . According to 2.3, Aoeﬂ'(xo,p)

N ow, using induction with respect to », we obtain from 2.5 and 2.7:

2.8. Let xy, xe P, x + xy, and pe P. Then there are elements x* and x?

such that

-1

(12) wy = x*(R(A))  for each AeF (x,,p),

(13) v = x'(R(4;)) for some A,eF (x4, ),

(14) v =a?(R(A)) for each AeF (x,,p),
)

15) wo = 22(R(4;))  for some AyeF (z,, D).

For v = a° we set @' = a? =x,.

2.9. Given w,,xe P and pe P, the elements x* and x* are uniquelly
determined.

Proof. Assume that =z, Ez(R(A)) for each’ Ae¢F(x,,p), and =z
= 2(R(AY})) for some A,eF (z,, p).

Then 2 = z(A,) and ze¢ A for each A e%(x,). Analogously, by (12)
and (13) we get ! = x(4,) and a'e 4 for each A % (x,), Then, by 1.13,
we have 2 = 2(4,) = x(4,)(d4,) = 2(4,)(4,) = 21(4,) = 2.

The proof for x? is similar.

2.10. If =z, x, p, A, are as in 2.8, then ! = x(A) and x? = x(A")
for each A eF (x4, p) with A < A,.

Proof. Let A = A,. Then A; c A* and thus it follows from (12)
and (13) that x, = 2*(R(A)) and & = #'(R(A")); therefore z(4) = z"
Analogously, by (14) and (15), we get z(A*) = 2%

2.11. Let w,ye P. Then there is A,eF (x4, p) such that x* = x(4,),
2% = 2(4y), ¥ = y(4,) and y* = y(4;).

Proof. There is A,e¢% (x,, p) such that the relations analogous to
{12)-(15) hold for x,,y and A,. Then 4, = A;N A, belongs to F(z,, p)
and now it suffices to apply 2.10 with 4 = 4,.

3. Factors A” and A”*. Under the same assumptions and denotation
as in Section 2 we put

P = {2': zeP} and A" = {a2: xeP}.

From 2.10 it follows that A NA™* = {x,}. From the definition of
z! (x?) we get immediately

xe A <> o' = 2 < 12 = 1,

Te A" < 22 =1 <21 = &,.
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Moreover, from 2.11 it follows that, for z, ye P, we have =z <y if
and only if 2! < y* and 22 < y2. Let ae A?, be AP*. By virtue of 2.8, there
is xe P such that

a = »(R(4,) for some A,eF (w,, p),
b =xz(R(A)) for each AeF (x,,p).

From the definition of 2! and z* we get ' = a and #? = b. Therefore
the mapping x — (%, 22) is an isomorphism of P onto A” X A?*. Thus we
have shown that conditions (i)-(iii) from Section 1 hold true, whence

3.1. P = [A? X AP*] for each pe 2.

Clearly, for any xze P, 2! = x(A?) and 2% = x(4"").

3.2. AP e F (x4, p) and card A® > 1.

Proof. Let p = [#,y]. For any A% (x,,p) we have z =y(R(4)),
whence #° = y*(R(4)); and so #? = y2. Therefore p||4”. Thus the mapping
¢t —t' is an isomorphism of [x,y] onto [«!, '] =« AP; whence card A”
> card[z, y] > 2.

3.3. A? is drreducible.

Proof. Assume that AP = [C x D]. Then either Ce% (z,, p) or
DeF (x4, p). Let CeF(xzy, p). Thus P =[Cx C*], D = C*. Let de D.
Then de C*, and therefore d = x,(R(C")).

Hence de A”*. At the same time de AP, therefore d = x,, and so
D = {x,}.

3.4. The partially ordered set F (x,) is atomic. The system {AP: pe P}
18 the set of all atoms of F(x,).

Proof. In view of 3.3, each A? is an atom of F(x,). Let 4 ¢F (x,)’
A # {x,}. There is aec A, a #* x,. From 2.4 it follows that there is x,e A’
r, # %y, such that x, and z, are comparable and the interval p with the
end points z,, ; belongs to #. Then we have p|4, and hence A? < 4.
This shows that &% (x,) is atomic and that each atom of #(z,) belongs
to the set {4”: pe P}.

3.5. Let x,ye P, x + y. Then there is pe P such that x(A”) # y(AP).

Proof. Assume (to the contrary) that x(A”) = y(AP) for each pe 2.
Then x = y(R(A”")) for each pe 2. According to 2.4, there is #,¢ P such
that x, +# x, =, is comparable with x, the interval p, with the end points
x, ¢, belongs to # and z = x,(R(A?")) for each peZ. By 3.2, p,d?,
thus ¢ =2, (R(A"O)). Therefore, x = xz,; a contradiction.

For p,, p,e # we put p, ~ p, if A"t = A”2. Then ~ is an equivalence
on Z. By the Axiom of Choice there is Z, = Z such that (i) if p,, pye Z,,
then p, ~ p, does not hold, and (ii) for any pe &, there is p,e &, such
that p ~ p,. Obviously, 3.4 and 3.5 remain valid if £ is replaced by £,.

3.6. If p,, pre P, p; # Py, then AP1NAP2 = {z,}.
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This follows from the fact that 4”1 and A®? are distinct atoms of
F (@)

3.7. Let [x,y] =pe?P, p ~p,eP,. Then x(A4A"2) = y(A4"2) for each
P2 Py P2 # D1

Proof. In view of 3.3 and 1.15, we have 4”2 ¢ A”", whence, by 1.17
and 1.13,

z(AP2) = z(AP2NAY") = 2(AP")(AP2) = y(AP")(AP2) = y(AP" N AP2)
= y(4%).

38. Let 2, ye P, v £ y. If Py = {pe P,: x(AP) +# y(AP)}, then the set
P, 18 finite.

Proof. This follows by induction from 3.7 and from the existence
of a minimal line connecting x and y.

In particular, we get from 3.8:

3.9. Let ve P. Then there is a finite subset P, — P, such that x(A?)
= ®, for each pe P\ P,.

3.10. Let py, ..., P, be distinct elements of #,. Then

P =[AP1x AP2x ... x AP»xQ],

where Q@ = APin ... nA”;t.

This follows from 3.1, 3.6 and 1.20.

311. Let x,yeP. If x(Q) # y(Q), then there is pe Py, p # p; for
i =1,...,m, such that x(AP) +# y(A4P).

Proof. Put v =2(Q) and v = y(Q). Then u(A%) = v(4%) = x,
for each 7 =1,.,.,n. Since u #* v, there is, by 3.5, u(A?) # v(A?) for
some pe 2.\ {Py, ..., o} Clearly, A? = @, and thus we have u(A?) = z(A4P)
and v(4P) = y(4?).

3.12. Let x,yeP. If x(A”) < y(AP) for each pe P,, then z < y.

Proof. By 3.8 there are distinct elements p,, ..., p, e #, such that
x(A?) = y(A®) for each pe#?, and p # p; for i =1,...,n By 3.11,
z(Q) = y(Q) and hence, by 3.10, = < .

3.13. Let p,, ..., p, be distinct elements of P,, y;e A% for i =1,...,n.
Then there is xe P such that x(A%) =y, ¢ =1,...,n, and x(4A®) = =,
for each pe Py, p #psy t =1,...,m.

Proof. By 3.10, there is x¢ P such that x(A4A?) =y, for¢i =1,...,n
and z(Q) = x,. Moreover, from 3.10 it follows that for p +# p, we have
A? < @, therefore z(4A?) = z,. ‘

4. Weak products of partially ordered sets. Let I be a non-empty
set and, for each ¢e I, let P, be a partially ordered set. The direct product
[]1P; (i I) is the set of all mappings f: I — (J P, such that f(¢)< P, for
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each eI, and the partial order on [][P; is defined by the rule f < g if
f(3) < g(3) for each ieI. Let @ # 8 = []P; such that

(i) if @, ye 8, then the set {te I: x(d) #~ y(¢)} is finite;

(ii) if weS, ze [[P; and the set {ieI: x(i) # 2(i)} is finite, then
ze S,

Under these suppositions § is said to be a weak product of partially
ordered sets P; for ieI (cf. [3] and [6]).

4.1. THEOREM. If P 8 a connected almost discrete partially ordered
set, then P 18 isomorphic to a weak product of irreducible partially ordered
sets.

Proof. Since the case cardP = 1 is ftrivial, we have cardP > 1.
Under the same notation as in Section 3 let T = [[A? (pe #,) and let ¢
be the mapping of the set P into T such that ¢(x)(p) = x(AP) for each
pe?,. Put 8 = ¢(P). From 3.1, 3.5 and 3.12 it follows that ¢ is an iso-
morphism of P onto 8. By 3.11, 8§ satisfies (i). According to 3.13, § fulfils
(ii). The proof is complete.

Let G = (@; +, <) be a partially ordered group and let @ = (G; <)
be the corresponding partially ordered set. Assume that @ is connected
and almost discrete. It is well known that a connected partially ordered
group is directed. Put #, = 0 and construct the sets A® for pe #, as in
Section 3. From 3.1 and [5] we infer that A” and A®" are subgroups of
the group (G; 4-) and that the partially ordered group G is a direct product
of its partially ordered subgroups A” and A?°, the projection of any ele-
ment x into A® or A?" being the element x(A4”) or x(A?"), respectively.
Moreover, from [5] and 3.10 it follows that G is a direct product of its
partially ordered subgroups A?: ..., AP» and Q.

Obviously, if G is a partially ordered group such that the partially
ordered set @ is irreducible, then G is irreducible as well. Therefore, by
virtue of 4.1, we have

4.2. THEOREM. Let G be a partially ordered group such that the corre-
sponding partially ordered set is connected and almost discrete. Then G is
a (restricted) direct product of irreducible partially ordered groups.

We conclude with the following remarks and simple examples.

4.3. If G is a partially ordered group such that the corresponding par-
tially ordered set G is almost discrete, then @ meed mot be discrete.

Example. Let G be the additive group of all reals with the natural
order. @ is not discrete and, being linearly ordered, it is almost discrete.

Another example of this kind is furnished by the 1-group of all
continuous real function defined on [0, 1].

4.4. If an interval [z, y] has only two elements, then it is irreducible;
thus any discrete partially ordered set is almost discrete.
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4.5. The set P, can be chosen in a way such that, for each [z, yle #,,
we have either x = x, or ¥y = Y,.

Proof. We have to verify that for each p = [z, y]e¢ %, there. is
P, = [®1, ¥1]e # with [, y] ~ [2,, y,] such that either x, = =z, or ¥, = y,.
Then the interval [z, y] in £, can be replaced by [z,, ¥,]. Since we have
shown that card A® > 1, there is a< A” with a # 2, and, clearly, x,e A?.
From 3.4 it follows that there is a simple line 2, 2,, ..., 2, connecting x,
and e and such that z;¢ A? for ¢ =0, ..., n. Let p, be the interval with
the end points z, = 2z, and z,. Clearly, p, ~ p.

4.6. For the concept of a direct decomposition of a graph cf. [7].
Let P be a partially ordered set with four elements z,, 2,, y,, ¥, such that
x; <Y, 4, = 1,2, and that the elements #, and x, (y, and y,) are in-
comparable. Let G(P) be the corresponding graph: Then G(P) can be
written as a non-trivial direct product while P is irreducible. Hence there
does not exist a one-to-one correspondence between the weak product
decompositions of G(P) and the weak product decompositions of P.
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