ANNALES POLONICI MATHEMATICI XXVIII (1973)

On the equivalence of Hille's and Robinson's functional equations

by Hiroshi Haruki (Waterloo, Canada)

Abstract. This paper gives a proof of the fact that Hille's functional equation is equivalent to Robinson's functional equation.

1. Hille [1] solved the following functional equation:

(1)
$$|f(s+it)|^2 = |f(s)|^2 + |f(it)|^2,$$

where f = f(z) is an entire function of a complex variable z and s, t are real variables.

Robinson [4] solved the following functional equation:

(2)
$$|f(s+it)| = |f(s)+f(it)|,$$

where f = f(z) is an entire function of z.

The purpose of this note is to prove that (1) is equivalent to (2). To this end we introduce the function g defined as

$$g(z) = \overline{f(\overline{z})}.$$

We see that g is an entire function since f is an entire function.

2. Proof that (1) implies (2).

By (1) we have

$$(4) |f(s+it)|^2 = f(s+it)\overline{f(s+it)} = f(s)\overline{f(s)} + f(it)\overline{f(it)}.$$

By (3), (4) we have

(5)
$$f(s+it)g(s-it) = f(s)g(s) + f(it)g(-it).$$

By (5) and by the Identity Theorem we have for all complex x, y

(6)
$$f(x+y)g(x-y) = f(x)g(x) + f(y)g(-y).$$

Putting y = -x in (6) and using the fact that f(0) = 0 (which follows from (1)) yields

$$(f(x)+f(-x))g(x) = 0.$$

We may assume that $f \not\equiv 0$. Then, by (3), we also have $g \not\equiv 0$. Since the ring of entire functions has no divisors of zero, we see by (7) that f is an odd function.

Hence, by (1), we have

(8)
$$|f(s-it)|^2 = |f(s)|^2 + |f(-it)|^2 = |f(s)|^2 + |f(it)|^2.$$

By (1), (3), (8) we have for all complex z

$$(9) |f(z)| = |g(z)|.$$

Since f, g are entire functions, by (9) and by the Maximum Modulus Principle we see that for all complex z

$$(10) g(z) = Cf(z),$$

where C is a complex constant of modulus 1.

By (3), (10), in view of the fact that f, and consequently by (3) also g, is an odd function we have

$$(11) \overline{f(s)} = g(s) = Cf(s),$$

(12)
$$\overline{f(it)} = g(-it) = -g(it) = -Of(it).$$

By (4), (11), (12) we have

(13)
$$|f(s+it)|^2 = C(f(s)^2 - f(it)^2),$$

and

(14)
$$|f(s)+f(it)|^2 = (f(s)+f(it))\overline{(f(s)+f(it))}$$
$$= (f(s)+f(it))(Cf(s)-Cf(it))$$
$$= C(f(s)^2-f(it)^2).$$

By (13), (14) we have (2).

3. Proof that (2) implies (1).

Squaring both sides of (2) and using (3) yields

(15)
$$f(s+it)g(s-it) = (f(s)+f(it))(g(s)+g(-it)).$$

By (15) and by the Identity Theorem we have for all complex x, y

(16)
$$f(x+y)g(x-y) = (f(x)+f(y))(g(x)+g(-y)).$$

Putting y = -x in (16) and using the fact that f(0) = 0, which follows from (2), we get (7), hence we see that f is an odd function, provided $f \not\equiv 0$.

Thus, by (16), we have

(17)
$$f(x+y)g(x-y) = (f(x)+f(y))(g(x)-g(y)).$$

Differentiating both sides of (17) with respect to y, putting y = x and noting that g(0) = 0, we obtain

(18)
$$g'(0)f(2x) = 2f(x)g'(x).$$

Differentiating both sides of (17) with respect to y, putting y = -x and using the facts that f(0) = 0 and, the function f being odd, so is g, by (3), and the function f' is even we get

(19)
$$f'(0)g(2x) = 2f'(x)g(x).$$

Differentiating both sides of (17) with respect to y and putting y = 0 gives

(20)
$$f'(x)g(x) - f(x)g'(x) = f'(0)g(x) - g'(0)f(x).$$

By (18), (19), (20) we have

$$(21) f'(0)g(2x) - g'(0)f(2x) = 2(f'(0)g(x) - g'(0)f(x)).$$

Since C(x) = f'(0)g(x) - g'(0)f(x) is an entire function of x and, by (21), satisfies, for all complex x, the functional equation C(2x) = 2C(x), we have C(x) = Kx [2, 3], where K is a complex constant, i. e.,

(22)
$$f'(0)g(x) - g'(0)f(x) = Kx.$$

Differentiating both sides of (22) with respect to x and putting x = 0 yields K = 0.

Hence

(23)
$$f'(0)g(x) - g'(0)f(x) = 0.$$

But (3) yields $g'(0) = \overline{f'(0)}$ and so

$$|g'(0)| = |f'(0)|.$$

We shall prove that

$$(25) f'(0) \neq 0.$$

Assume the contrary. Then, by (19), we have for all complex x

$$(26) f'(x)g(x) = 0.$$

Since the ring of entire functions has no divisors of zero, by (26) either f is a complex constant and so, by (2), $f \equiv 0$ or $g \equiv 0$ and so, by (3), $f \equiv 0$. This is contrary to our assumption that $f \not\equiv 0$. Consequently (25) holds.

By (3), (23), (24), (25) we have for all complex z

(27)
$$|f(\bar{z})| = |g(z)| = |f(z)|.$$

By (2), the oddness of f and the Parallelogram Law we have (28)

 $|f(s+it)|^2 + |f(s-it)|^2 = |f(s)+f(it)|^2 + |f(s)-f(it)|^2 = 2|f(s)|^2 + 2|f(it)|^2$, where s, t are real variables.

By (27), (28) we have (1).

The author wishes to thank the referee for helpful suggestions.

References

- [1] E. Hille, A Pythagorean functional equation, Ann. Math. 24 (1923), p. 175-180.
- [2] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. Ecole Norm. Sup. (3) 1 (1884), Supplément, p. 3-41.
- [3] M. Kuczma, Functional equations in a single variable, Monografic Matematyczne Tom 46, Państwowe Wydawnictwo Naukowe, Warsaw 1968, p. 140.
- [4] R. M. Robinson, A curious trigonometric identity, Amer. Math. Monthly 64 (1957), p. 83-85.

UNIVERSITY OF WATERLOO WATERLOO, ONTARIO CANADA

Reçu par la Rédaction le 4. 9. 1971