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On a modification of the method of Euler polygons
for the ordinary differential equation

by A. PELczAR (Krakéw) *

The subject of the present paper is a problem which has been for-
mulated by Professor T. Wazewski.

§ 1. We shall consider the ordinary differential equation

(1.1) Yy = f(z,y)
with the initial condition
(1.2) yla) =c.

By zu(x, €), n =1,2,..., we denote the Euler polygon constructed
for the interval <{a, £) and the division d(a,, ..., as) of this interval by

points a; = a + % (E—a) (j =0,1,...,n). For n = 0 wedefine z,(z, £) = c.

Now we put

(1.3) ga(&) X 2, &) .

For example, for the equation

(1.1) y =y

with the initial condition

(1.27) y(0) =1

we have a =0 and
2z, &) =1, xe0,§),
iz, &) =14z, ze<0, &,

(1.3") 142, Te <0, §> y
2o(®, &) =1 .

(1+5)(1+o—3), =e(5.e),

* The author would like to express his sincere thanks to Professor T. Wazewski
for his valuable advice.
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&
14z, m€<0’ﬁ>’

pea)esesd) wGlo,
(1.3") 2z, &) = (1+5)2(1+m_%5), .’L‘e(%f,%~5>’

e
n n 1

In this case

(1.4) Palf) = (1 + g)

and the sequence {@,(&)} is uniformly convergent to e¢ in each interval
<0,b> (b < + oo). Hence for the equation (1.1') with the initial con-
dition (1.2'), the sequence {z,(&, £)} is uniformly convergent to the solution
of the problem (1.1'),(1.2’). Moreover, in this case, the sequence of the
derivatives {p,(§)} is uniformly convergent to the derivative of the solution
of this problem.

Now the following problem arises: Is the sequence {pu(x)}, defined
by (1.3), uniformly convergent to the solution of the equation (1.1) with
the initial condition (1.2) in the general case?

Remark 1. From the definition of the sequence {gu(x)} it follows
directly that we can write it in the following form:

@ol) = ¢,
(1.4) <pn(w)=¢n_1(a+n—;1(w—a))+

n—1

o)

or equivalently
Pol®) = ¢,

(1.5) %w)=c+f”%‘fgr[a-{—g(w—a),%(a—{—%(w—a))].

The answer to the above problem is given by the following

THEOREM 1. Let us assume that
1. f(x, y) is defined and continuous in the set

T={=y:a<z<b, ly—c <M},
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2. f(zy9) < M, b—a <1,

3. tn the inlerval (a,b) there exists exactly one solulion y(x) of the
problem (1.1), (1.2).

Then the sequence {pn(x)} defined by (1.3) ts wuniformly convergent
to y(x).

Proof. Let us perform the division d = d(B,, B, ..., fm) of the
interval <a, ) by the points g; (8; < B;+1). We put

(1.6) 8(d) £ max (|f;—B) .

7. k=0,...,m

By E(s) we denote the set of all Euler’s polygons y construected for the
interval {a,b) and a division d of this interval such that 4(d) < s. We
have (cf. [1], III, § 8)

(17) Vs>0Hn VweE(s)Va:e(a,w[s < n=> W(w)“y(ﬁ)l < 3]

where y(x) is the unique solution of the problem (1.1), (1.2). Let & € {a, b).
By za(z, &£) we denote the Euler polygon for the division d,., which is
given by the points

1 1
(1.8) @, a+>(E—a), ..., a+”7- (E—a), &,

a+"—;:—1(5—a), . a+%(£—a}, b

where % is such an integer that
k k+1
at+ (t—a)<b<atTliq).

Of course, the definition of the sequence {z;(z, &)} implies directly that
(1.9) (€, &) = 2a(€, &) = @alé) .

By s(n, () we shall denote 6(d,,). It is easy to see that for each
{ < & we have
S(’f’b, C) < 3(”7 f) .
In particular
Viewany [8(n, &) < 8(n,bd)].

Moreover
V,dy [n > N =>s8(n,b) <7n].
Hence

From (1.7) and (1.10) it follows that

VN VeeabyVaeapy [0 = N = |2, &)—y(z)| < e]

Annales Polonici Mathematici XV 14
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and from (1.9) we have

VlxVie@apn [0 = N=>|pu(E) —y(8)| < €],

which completes the proof of Theorem 1.

§ 2. Remark 2. If we assume that f(z,y) has both partial first
derivatives, then each ¢u(x) has a first derivative. We prove this easily
by induction with respect to n (making use of (1.4)).

Now the following problem appears: Is the sequence of derivatives

{gn(z)} uniformly convergent to the derivative y’(z) of the solution of
the problem (1.1), (1.2)?

To answer this problem we shall prove the following

THEOREM 2. Let us assume that

1. f(z, y) is defined and continuous in T,

2. f(x,y) has both first derivatives, fulfilling the Lipschitz condition
with respect to both variables,

3. If@, o)l < M, | 2| <,

4. b—a)M, <1, b—a < 1.

Then the sequence od derivatives {@,(x)} is uniformly convergent in
{a, b) to the derivative of the solulion of the problem (1.1), (1.2).

7]

Remark 3. From the assumptions of Theorem 2 it follows that in
the interval {(a, b) there exists exactly one solution y(x) of the problem

(1.1), (1.2).

Proof. I,. At first we shall show that there exists a number ¢, such
that

(2.1) wu(z)| <@, for each weda,b>, n=0,1,..
We put

(2.2) In(@) = a+ 2L @—a), @) = gar{inla) .
Hence

(2.3) M) =21 ue) = gis (hale)) - 2L

n n

From (1.4) we have

(24)  g(a) = pnla) + 3 fAa(a), pal@)] +

+ 2 ol (@), (@) 10(@) + ol 2a@) , pin(@)] ()}
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In view of (2.3) and the assumptions of the thecorem, we have

—1 b— — b 1
(w))l(-"n ey )+ M+,

lpn(z)| <

Because (n—1)/n <1, we have

1 b—a

gn(@)] < |pn- ,(z,,m))](l__+ b—a

M2)+ M4SN,

Now we want to find a constant @, such that
(2.5) {lpn—1(x)] < @1 in <a,bd}={lpx(z)] < @, in {a,b)}.

It is easy to see that this condition is fulfilled by each positive solution @
of the following inequality:

. 1 b—a 1 b—a
(2.6) Q(l—q—@-}-—-?— M2)+T—LM+ M,<Q.
Hence if we put in particular

. M+ (b—a)M,
(2") Ql_ 1—(b—a)M2 b

then |go(z)] = 0 <@, and (2.5) holds, and in consequence (2.1) holds
for each n.

IT,. We shall prove that there exists a constant R, such that
(2.8) lpn(2) —@a(y)] < Bylz—y| for z,yela,bd, n=0,1,..

Let L,,, Ly, Ly, L,, be the Lipschitz constants for the partial deriv-
atives of the function f(z, y) (see assumption 2), i.e. we have

lfel@, y) —f(Z, Y)| < Lyl —Z| + Lyly—yl ,
Ifulz, y) —_fy(ja Y < Lyle—7Z| + Lyly —¥| .
From (2.2) and (2.3) we have

(2.9) An(@) — Anly)] <

n—1

(2.10) |un(2) — pa(y)] < — — |z —yl,

where @, is the constant (2.7). From (2.4), (2.9) and (2.10) we infer
(2.11) l%(w)—tp;(y)l

< A,, lfnl

Fn-1 (@) —pna (@) |+ - ——Balz—yl ,

14*
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where
(2.12) An=1+M2b;“,
n—1
(2.13) Bn = 2(M, +Q M,) + - C,
(2.14) C = (b—a)(Ly + L0, + Ly, +LzaQ§) .

Now we want to find a number R, such that
(2.15)  {lpa-1(®) —gn-1(y)] < Rylz—yl1} = {lga(@) —ga(y)] < Bz —yl} .

This property characterizes each positive solution R of the following
inequality:

1 b— 1
(216)  R-R(; M%)+ 1200+ Q)+ 1< R.
Hence, if we put in particular
_ 2(M+-M0,) +C
(217) By = 1—M,b—a)

then |po(z) —@o(y)| = 0 < R,|lz—y| and (2.15) holds. Hence (2.8) holds
for each n.

I1T,. Let {p.,} be an arbitrary subsequence of the sequence {g,}.
From Arzelo’s theorem, the assumptions of which are satisfied in view
of parts I, and II,, it follows that there exists a subsequence {gps } of the
sequence {@, } uniformly convergent. From Theorem 1 it follows that the
sequence {@z,} is uniformly convergent to y(z). Hence {gg,} is uniformly
convergent to y'(z). But the limit is independent of the choice of the

sequence {g, }. Hence {g,} is uniformly convergent in the interval <a, b)
to the derivative y'(x).

§ 8. Remark 4. It is easy to prove by induction with respect to »

. . . o
that if f(z,y) has all derivatives 8mﬂgy' p=1,...,k q+r=p,

¢g=0,1,..,k r=0,1, ..., k), then each g(z) has all derivatives ¢¥(z)
(p=1,..,k).

THEOREM 3. Let us assume thal

1. f(x, y) is defined and continuous in T,

of
2. If(e, y)| < M, !a_y < M,

3. b—a)- M, <1, b—a<1,
oFf (p =
ooy P T

4. f(x,y) has all bounded partial derivatives
q+r=p,q¢q=0,...,k r=0,..,k),
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o*f .
Saoy (g+r=%k, q=0,...,k, r=0,..,k) fulfi
the Lipschitz condition with respect to both variables.

k k
Then the sequence {%ﬁ «pn(a:)= 18 untformly convergent in {a, b) to a—% y(x),

3. all derivatives

where y(x) is the solution of the problem (1.1), (1.2).
Proof. I,. From (1.5) it easily follows that for m > 2

n—-1

(3.1) P () = Z Ui+ I “2 Vi,

where

-1

B2 U= U@ - it fe-a), (ot o)),

3.3 Vi=V —dmfa (g 1.( )
(3.3) = i(“")*ﬁL +1—?, a), gi a-l-na?—a .
Moreover, it is possible to write

_ 1\ Of | om _
(3.4) Vi= Wila)+ (ﬁ) T gm0+ 1o—a))

where W is independent of ¢{™. Of course Uy is also independent of ™.

IT;. It is possible to prove that for each m there exists a constant @,
such that

(3.5) loi(2)] < Qm for each =xe<ca,by, n=0,1,..

In order to prove this, we apply the induction procedure with respect
to m. For m = 0 (3.5) holds evidently (@, = [¢c|+M). In view of the
inequality (2.1) (see part I, of the proof of Theorem 2) it holds also for
m = 1. Now we assume that there exist such constants @, (p <s—1)
that (3.5) holds for all m = 0,1, ...,s—1. Now, the induction procedure
with respect to n proceeds in the same manner as in part I, of the proof
of Theorem 2. In consequence there exists a constant ¢;, such that (3.5)
holds for m = s, which finishes the induction proof of (3.5) for all m.

ITIT,. Remark 5. If we make the first and the second assumptions
of Theorem 1 and, moreover, assume that f(x,y) fulfils the Lipschitz
condition with respect to x# and y, with the constants K and L respectively,
then

(3.6) 9n(®) —@n(y)] < Rolw—y|
for each z € <a,b)>, n =0,1, ..., where
B o— M+ (b—a)K
" 1—=(b—a)L
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The proof of this follows the same method as the proof of (2.1), Of
course, if we suppose that f(z, y) has both bounded partial derivatives,
then f(z,y) fulfils the condition of Lipschitz and (3.6) holds.

It is possible to prove that for each m there exists a constant R,
such that

(3.7 |¢(x) — ¢ (y)| < Rmlz—y| for z,yela,by, n=0,1,..

In order to prove the existence of that R, we apply the induction
procedure with respect to m. In view of Remark 5 and (2.8), (3.7) holds
for m =0, 1.

Now we assume that there exist such constants R, (p < s—1) that (3.7)
holds for m =0,1,...,8—1. Then U; and V; are polynomials of the
Lipschitz functions and in consequence they are also Lipschitz functions.

Now the induction procedure with respect to » proceeds in the same
manner as in part II, of the proof of Theorem 2. Hence, we infer the
existence of such a constant R, that (3.7) holds for m = s, which completes
the proof of (3.7) for all m.

IV,. In order to finish the proof of the theorem, we apply a similar
reasoning to that followed in part III, of the proof of Theorem 2.
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