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1. Introduction. The well-known Hahn-Mazurkiewicz theorem states
that, for metric spaces, a continuum is the image of an arc under contin-
uous map if and only if it is locally connected. Now, even for non-metric
spaces, a Hausdorff image of an arc under a continuous map is locally
connected, where by an arc is meant a continuum with only two non-cut
points or, equivalently, a non-degenerate ordered continuum. This follows
easily from the fact that a Hausdorff continuum is locally connected if
and only if it satisfies Sierpinski’s condition, which states that each open
cover of the continuum has a finite refinement consisting of continua.
For proofs of these results, see Kuratowski [2]. We also remark that Why-
burn’s proof of Kelley’s theorem ([8], p. 39), which states that a Haus-
dorff image of a metric arc under a continuous map is arcwise connected,
carries over via Zorn’s lemma to the non-metric case with but little modifi-
cation. That not every locally connected Hausdorff continuum is the
image of an arc under a continuous map was first demonstrated by Marde-
8ié [3], who gave an example of a locally connected Hausdorff continuum
that is not arcwise connected. A conceptually simpler example has been
given more recently by Cornette and Lehman [1]. For a discussion of early
conjectures concerning the extension of the Hahn-Mazurkiewicz theorem
to non-metric spaces, see Mardesié [3].

It is the main purpose of this paper to prove that every continuum
in which each two points are separated by a finite point set is the image
of an arc under a continuous map. An interesting question related to this
theorem has been raised by Mardesié [4]. If the Hausdorff continuum
M is the image of an arc under a continuous map and z and y are points
of M contained in no metric subcontinuum of M, then are x and y separated
in M by a finite point set? Thus, if the answer to Marde&ié¢’s question is
in the affirmative, a partial converse of this theorem is true.
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2. Definitions and preliminary theorems. A dendritic space is a connect-
ed space in which each two points are separated by a third point. A netlike
space is a connected space in which each two points are separated by a finite
point set. A space is rim-finite at the point p if each open set containing
p contains an open set containing p with finite boundary. If ab is an arc
from a to b and R is a space homeomorphic to ab — {b} with non-cut point
p, then R is called a ray starting from p. Netlike continua are known to
be rim-finite, locally connected, and arcwise connected. These and other
properties of netlike continua have been studied by Proizvolov [7]. The
author proved in [6] that every dendritic continuum is the image of an
arc under a continuous map, and in what follows that result is generalized
to netlike continua.

THEOREM 1. If R is a ray and f is a conltinuous one-to-one map of R
into the netlike space Y, then there is a subray S of R such that f(S) is a ray
n Y.

Proof. Suppose there exist two points # and y of R such that for
each subray S of R both f(x) and f(y) are limit points of f(8) in Y. Let
F be a finite subset of Y separating f(«) from f(y) in Y. There is a subray
S of R such that Snf'(F) =@. But then f(8)u{f(z),f(y)} is
a connected subset of ¥ — F. If there exists a point # of R such that,
for each subray S of R, f(x) is a limit point of f(S) in Y, then let § be
a subray of R starting from a point p of R such that #¢ B — 8. If no such
point x exists, then let S be a subray of R starting from any point p of R.
Therefore, the subspace f(8) of Y is locally compact, connected, and each
point of f(S)—{f(p)} is a cut point of f(S). It follows that f(S) is a ray
starting from f(p).

THEOREM 2. If R is a ray in the netlike continuum Y starting from
the point x, then R has one and only one limit point y in ¥ — R and Ru {y}
is an arc from z to y.

Proof. Since Y is compact and R is not compact, K has a limit point
y in Y — R, and since Y is netlike, R has no other limit point in ¥ — R.
Therefore, R u{y} is closed in Y, and hence compact. Now, for each point
zof R — {z}, z is a cut point of R, and since y is not a limit point of the arc xz
of R, zis a cut point of Ru{y}. It follows that Ru{y} is an arc from z to y.

THEOREM 3. If X i3 a dense connected subspace of the dendritic continuum
X' and f 8 a continuous one-to-one map of X into the netlike continuum Y,
then f has a continuous extension to X'.

Proof. It follows from Theorem 1 of [5] that both X and X’ are
uniquely arcwise connected. Let p be an end point of X’. For each z in
X’ — X let px denote the arc in X’ from p to . Now, since X’ is dendritic
and X is a dense connected subset of X', X' — X is totally disconnected.
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Therefore, each open set in X’ containing # contains a point w of X, and
since the subare pw of pz is a subset of X, the ray R, = px — {z} is a subset
of X. It follows from Theorems 1 and 2 that for each x in X’ — X there
is a subray 8, of R, such that f(S,) is a ray in Y with one and only one
limit point in Y —f(8,). Let g be the extension of f to X' such that, for
each z in X' — X, g(«) is the limit point of f(8,) in ¥ —f(S,). We shall
now prove that g is continuous. For each z in X’ — X, g is continuous on
8,, S;u{x} is an are, g(S,u{x}) is an arc, and hence ¢ is continuous on
S,u{x}. It follows that, for each x in X' — X, g is continuous on pxr. Now
let e X' and let « be a universal net in X’ converging to z. Let ¢ be an
end point of X’ such that x is a point of the arc pq. If » is eventually in
pq, then g-u converges to g(x), since ¢ is continuous on pq. Suppose
is eventually in X' — pq. Let v be a subnet of u in X' — pq. Let » be the
retraction of X' onto pg such that, for each z in X' — pq, r(2) is the last
point of the arc pz on pq. Now r is continuous, and hence the net »-v
converges to »(x) = x. There is a subnet s of v with domain D such that
t = r-s is a strictly monotone net in pq converging to z. For each a in D
let M, = s,t,— {8,y %} Then M, < X for each « in D, and since g is
continuous on X, g(M,) is connected. Furthermore, if a and g are distinct
elements of D, then M, and M, are disjoint, and since g is one-to-one
on X, g(M,) and g(M 5) are disjoint. Now ¢-s is a universal net in the com-
pact space Y, and hence converges to a point ¥ of Y, and since ¢ is con-
tinuous on pq, g-t converges to g(x). Each of ¥y and ¢g(x) is a point
of liminf{g(M,), ae D}, and {g(M), ae D} has no finite subnet. Hence,
if y # ¢g(z), then no finite subset of Y separates y from g(z). Therefore
y = ¢g(x), and hence g-u converges to g(z). It follows that g is continuous.

THEOREM 4. Every arcwise connected rim-finite space is semi-locally
connected.

Proof. Suppose p is a point of the arcwise connected rim-finite space
X and U is an open set containing p. There is an open set V such that
peV = U and BV is finite. If C is a component of X — V and qe C, then
there is a last point x of 8V on some arc pq from p to ¢, and hence the ray
xq — {x} is a subset of C. Therefore, each component of X — V has a bounda-
ry point in V. Clearly, no point of 8V is a boundary point of two compo-
nents of X — V. It follows that X — V has only finitely many components.
Therefore, X is semi-locally connected at p.

Definitions. Let p be a point of the space ¥ and X < Y. Then
p i8 said to be accessible from X if there is a subspace R of Y such that R
is a ray starting from p and lying except for p in X. If Y is a space, X = Y,
pe Y, and R is a ray starting from p and lying except for p in X such that,
for each point g of R, the arc pq of R has the same relative topology in both
Y and R, then R is said to be embedded in X at p. The space R is said to
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be maximally embedded in X at p if R is embedded in X at p and is not
a subspace of any other ray embedded in X at p. If p is a point of the den-
dritic space X and .# is a collection of subspaces of X such that X = | &,
each element of & is a ray starting from p and, for each two elements
H and K of ¥, HNK = {p}, then X is called a simple tree growing from p,
and the elements of & are called the branches of X. If Y is a space, X < ¥,
pe Y, and T is a simple tree growing from p such that each branch of 7
1s embedded in X at p and the collection of all subsets U of T such that U
contains p and is the intersection of 7 with an open set in Y is a base at
p in the space T, then T is said to be embedded in X at p. The space T is
said to be maxrimally embedded in X at p if T is embedded in X at p and
1s not a subspace of any other simple tree embedded in X at p.

THEOREM 5. If X 48 a subset of the space Y and p is a point of Y
accessible from X, then there is a simple tree maximally embedded in X
at p.

Proof. Let # be the collection of all rays starting from p and lying
except for p in X, order £ by set inclusion, and let . be a maximal chain
in #. Then B, = | J.¥ is aray maximally embedded in X at p. Suppose B,
has been defined for a < 8, and suppose p is accessible from X — (J B,.

a<f

Let B; be a ray maximally embedded in X —UB, at p. Thus, for

a<p
some ordinal 4, B, is defined for each a < A. Let

T = UB,.

a<d

For each subset U of T'let U be open in 7 if and only if, for each branch
Bof T, UnB is open in B. If pe U, then there is an open set V in Y such
that VnT < U. It follows that T is a simple tree maximally embedded
in X at p.

Definitions. Suppose X is a set partially ordered by the relation <.
For each # in X let

L(z) = {yly<w}, DL(z)={yly<ua},
U@)={yly>x} and DU(x)={yly>u=}.

These notations may be read: the lower set at x, the deleted lower
set at @, the upper set at v and the deleted upper set at x, respectively.
X is a tree if, for each = in X, L(x) is fully ordered. X is a semilattice if
each two elements of X have a greatest lower bound. The greatest lower
bound of x and y is denoted by xAy. A zero of X is an element 0 of X such
that, for each # in X, zA0 = 0.
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3. Proof of the main theorems. That every netlike continuum is the
image of an arc under a continuous map follows from Theorem 4, other
known theorems, and the following theorem, which is of some interest
in its own right.

THEOREM 6. Every netlike continuum s the image of an arcwise con-
nected semi-locally connected dendritic space under a one-to-one continuous
map.

Proof. The idea of the proof is to decompose the netlike continuum
into simple trees such that the resulting decomposition will have something
like a dendritic structure. Indeed, the simple trees will play a role similar
to that played by simple links or true cyclic elements in cyclic element
theory.

Let Y be a netlike continuum. Well-order it and let p, be the first
point of Y. Let T, be a simple tree maximally embedded in Y at p,, let
Fo = {T,}, and let M, = U &,. Suppose M, has been defined for a < 8.
Let

H=UM,,

a<f

let pg, be the first point of H accessible from Y — H, and let T's, be a simple

tree maximally embedded in Y —H at pg. Suppose now that pg, and
T;, have been defined for m < nm. Let

K = U T pm»
m<n
let pg, be the first point of H accessible from Y —(HUK), and let T,
be a simple tree maximally embedded in ¥ —(H uK) at pg,. Let &4 be
the collection of all such sets T'y,, and let M; = Hu | &;. Now, for some
ordinal A, M, is defined for each ordinal a < 1. Let

M = U Ma’

a<li
and suppose M # Y. Since Y is arcwise connected, there exists an arec
xy from a point x of M to a point y of Y such that vy —{o} = Y — M.
There is a smallest ordinal g such that xe¢ M,;. Then we infer, using the
above-given notation, that ¢ = p,, for some », and hence the simple tree
T,, is not maximally embedded in ¥ — (H UK) at pg,. Thercfore M = Y.
Let

S = Fo{{a}|we Y —M}.

Let {T,, ae D} be a net of non-degenerate elements of &, let p, be
the growth point of 7, for each a in D, and let pe Y. Then {T,, ae D}
is said to converge to p if the net {p,, ae D} converges to p.
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If y<i+1, then a y-chain is an indexed collection {T',|a < y}
such that

(1) for each a< y, T, e &,,

(2) for each @ such that a+1 < y,T,,, grows from a point of T,
and

(3) if g is a limit ordinal less than y, then the net {T,, a < 8} con-
verges to a growth point of T'.

If # ={T,,a< y}is a y-chain and & = {T,;|la< y-+1}is a (y+1)-
chain, then 2’ is denoted by Zu{T,,,}, and £ is said to be attached
toT,,,. % ={T,la< y}is a y-chain, 0 < B < y, and & = {T,|la < B}
is a f-chain, then 2’ is called a f-subchain of #.

We now define an admissible chain and a choice function & on a sub-
family of & as follows:

(1) {T,} is an admissible 1-chain,

(2) if a> 0, Te &,, and &(T) is defined, then &(T) is an admissible
a-chain,

(3) if a > 0, Te &¥,, and there is an admissible a-chain attached to T,
then &(T) is defined and &(T)u{T} is an admissible (a-+1)-chain,

(4) for a limit ordinal B, a f-chain £ is admissible if and only if, for
each a such that 0 < a < g, the a-subchain of & is admissible, and

(5) if pe X — M, B is a limit ordinal, and there is an admissible g-chain
converging to p, then &({p}) is defined and &({p}) u{{p}} is an admissible
chain.

The elements of a chain will be called its links. Note that each chain
has T, as a first link, but that it need not have a last link, even if it is
a maximal admissible chain. Let # be the union of all admissible chains,
and let X = | J#. We shall eventually prove that # = % and X = Y.

Let T be a simple tree in # with growth point p. Then T has a natural
partial order defined by = < v if and only if x = p, # = ¥, or x separates
p from gy in T. Note that T is a semilattice tree with p as a zero element.
Now # has partial order defined by 8§ < T if and only if § belongs to an
admissible chain with last link 7. To prove that .# is partially ordered by
<, note that each subchain of an admissible chain is admissible and each
element of .# is the last link of one and only one admissible chain. Finally,
X has a partial order defined by # <y if and only if

(1) there exists a degenerate element {p} of # such that =y = p,

(2) there exists a simple tree T in # such that z,yeT and 2z <y
in T, or

(3) there exist elements S and T of # such that ze S, yeT,8S<T
in f, and if S< R< T in # and R grows from a point p of S, then z < p
in R.
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The proof that X is partially ordered involves several cases and is
omitted. A new topology for X is now defined in terms of the partial
order on X and the topology on Y. Let a subbase for the new topology
be the collection of all subsets U of X such that, for some openset Vin Y and
some point z in X, U = (VnNX)— U(x). The following lemmas are needed
to prove that X is an arcwise connected rim-finite dendritic space in its
new topology. )

LEMMA 1. £ is a semilattice tree with zero.

Proof. T, is clearly the zero element of .#. For each element T of
S, L(T) is the admissible chain from 7', to 7, and since admissible chains
are well ordered, .# is a tree. Suppose S and T are incomparable elements
of #. There exist a first element H of L(8)— L(T) and a first element
K of L(T)—L(S). Hence DL(H) = DL(K), and if DL(H) does not
have a last link, then it converges to a point p and both H and K grow
from p, which contradicts the maximality of the embedding of the simple
trees H and K. Therefore, DL(H) has a last link G, and G = HAK = SAT.
It follows that . is a semilattice.

LEMMA 2. X 4s a semilattice tree with zero.

Proof. p, is clearly the zero element of X. Suppose ze X, and = and y
are points of DL(z). Let R, S and T be clements of 4 such that ze R,
yeS and z¢T. Hence R, S < T, and since # is a tree, either R< ST
or SKR<T. Assume R < S <T. Now if R = §, then, since R is a tree,
z <y or y < . Suppose R < §. Since ¥ < 7, there is a point p of R which
is a growth point of some element U of L(T) and x < pin R. Then Ue L(8),
and it follows that # < y. Therefore X is a tree. Now suppose x and y are
points of X. Let S and T be elements of # such that 2¢ 8 and ye T. Let
R = SAT. There arc points p and ¢q of R such that p is a growth point
of some element of L(S) and ¢ is a growth point of some element of L(T).
Then Ay is the point p A ¢ of the semilattice R. It follows that X is a semi-
lattice.

LEMMA 3. For each x in X —{po}, L(x) is an arc in Y from p, to x.

Proof. Suppose y is an ordinal and x is a point of some clement T
of &,. The proof is by induction on y. If y = 0, then x is a point of some
branch B of T, and L(x) is an arc in B from p, to x. Since B is embedded
in Y at py, L(x) is an are in Y from p, to 2. Suppose y > 0 and, for cach
B < y, each clement S of &, and each point p of § —{p,}, L(p) is an arc
in Y from p, to p. First suppose y = f+ 1 for some ordinal g. There exist
an element S of &5 and a point p of S such that T' grows from p. L(p)
is an are in Y from p, to p. If # + p, then there is an arc 4 in 7 from p
to z, L(p)vd = L(x), L(p)NnA = {p}, and hence L(x) is an arc in Y
from p, to #. Now suppose y is a limit ordinal. Let L(T) = {T,{a < y}
and, for each a < v, let p, be the growth point of T',. For each a such that
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0<a< y,L(p,) is an arc in Y from p, to p, and if a < g < y, then
L(p.) = L(pg). Let
R = U L(p,).
a<y

Then R is a ray in Y starting from p,, and the net {p,, a < y} con-
verges to p,. It follows from Theorem 2 that L(p,) = Ru{p,} is an are
in Y from p, to p,, and it then follows as before that L(x) is an arc in ¥
from p, to z. Finally, if {z} is an end link of some admissible chain, then
the proof is similar to the above.

LEMMA 4. For each x in X, L(x) has the same relative topology in both
X and Y.

Proof. We shall prove that, for each open set U in Y and each point
y of Y, (U—U (y))n L(x) is open in the subspace L(x) of Y. If ye X — L(x),
then L(z)nU(y) =0. If y =2, then L(2)nU(y) = {x}. If ye DL(x),
then L(z)nU(y) = L(x)— DL(y), and it follows from Lemma 3 that
L(x)— DL(y) is an arc in Y from x to y. Therefore, in any case, L(x)NU (y)
is elosed in Y, and hence (U — U(y)) NL(=) is open in the subspace L(z)
of Y.

LeMMA 5. For each x in X, U(w) is closed in X and DU (x) is open in X.
Proof. U(xz) is closed in X, since X — U (z)is open in X. Let ye DU (x).
There is an open set V in Y containing y such that V < ¥ — L(=), and
pV is finite. Let
BV NX)—U(x) = {m17 cery wn}'

Now, for each zin (VNX)— U(x), L(2)is an arc from p, to 2, and hence,
for some %, x;e L(z) and ze U(x;). Let

W = (VaX)— U Ulz).
i=1

Then W is an open set in X, ye W, and W < DU (x). It follows that
DU (x) is open in X.
LEMMA 6. X 8 dendritic in its new topology.

Proof. Let  and ¥ be points of X. If # < y, then there exists a point
z such that # < z < y, and hence X — {2} is the union of the two disjoint
open sets X — U(z) and DU (z) containing « and vy, respectively. Suppose
z and y are incomparable. For each z in DL(x) — L(zAy) and w in DL(y) —
—L(zAy), DU(2) and DU (w) are disjoint open sets containing x and v,
respectively. Let U denote the union of all such sets DU (z), and let V
denote the union of all such sets DU (w). Then X — {xAy} is the union of
the two disjoint open sets U and V u (X — U(xAy)) containing x and v,
respectively.

LEMMA 7. X i8 rim-finite in ils mew topology.
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Proof. Let ¢ X, let U be an open set in Y, and let =,, ..., x, be
points of X such that

(UNX) - ) Uz
i=1

is a basic open set in X containing x. There is an open set V in Y such
that 2ze V=< U and BV is finite. Let

W = (VAX)— Ln) U(,).

Then ze W < U and W is open in X. For each subset M of X, let
fx denote the boundary of M in the space X. The following computation
shows that fx W is finite:

BxW < u Bx((VAX)— Uley) < Q(ﬂx(VﬂX) U U (2)

< u BV Lla}) = BV lay, ..., 4.}

It now follows from the lemmas and Theorem 4 that X, in its new
topology, is an arcwise connected semi-locally connected dendritic space.
Furthermore, since the new topology of X is finer than the subspace to-
pology of X, the inclusion map & of X in Y is continuous. It remains to
be proved that X = Y. We first prove by induction that &, < # for each a.
Clearly, ¥, < #. Suppose &, < £ and T'e &#,,,. Then T grows from some
point of the last link of an admissible a-chain, and hence &(7T') is defined
and &(T)u{T} is admissible. Now suppose y is a limit ordinal and &, < ¥
for a < y. Let T« &, with growth point p. If p e X, it follows, as in the proof
of Lemma 3, that there is an admissible y-chain converging to p, and hence
&(T) is defined and &(T)u{T} is admissible. Suppose pe Y —X. It
follows from Theorem 3 of [5] that X is a dense subspace of some dendritic
space X'. Now, from Theorem 3, the inclusion map h has a continuous
extension g to X'. Since g(X') is a compact subset of ¥ and X is dense
in g(X), g(X’) = X. There is an arc A in X’ from p, to a point = of g~ (p)
such that A — {z} < X. Now g(A —{z})isaray Rin Y,pe Y—R, and p
is a limit point of R. It follows from Theorem 2 that Ru {p} is an arc p,p
in Y from p, to p. Again it follows, as in the proof of Lemma 3, that for
each ¢ in p,p — {p,} such that ¢ is a growth point of some element T, of S
there is an admissible chain £, converging to ¢. Since L(q) is an arc, the
growth point of each link of £, is in p,p. Furthermore, if re pop — {Po}
and r is a growth point of some link of an admissible chain £, converging
to r, then one of the admissible chains #, and £, is a subchain of the other.
Hence for some g the union £ of all such admissible chains #, is an admis-
sible -chain converging to a point y of p,p. Suppose y # p. Let 2z be a point
of p,p such that y < z < p. Then there is an element of &, that grows from
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y and contains some subare of the arc yz, which contradicts the maximality
of 2. Therefore y = p. Suppose 8 # y. Since p is accessible from Y — (J M,

a<f
there is an element S of &, containing p, and since no two simple trees

grow from the same point, p is not the growth point of S. Then T grows
from a point of S, and hence y = g+ 1, which contradicts the supposition
that y is a limit ordinal. Therefore § = y, and £ is an admissible y-chain
converging to p. Hence &(T') is defined, and &(T)u{T} is admissible. It
follows that &, < .# for each a, and hence X = Y. Finally, suppose
pe Y — M. It follows as before that there is an admissible chain converging
to p, so that £({p}) is defined and &({p})u{{p}} is admissible. Therefore
X = Y. This completes the proof of the theorem.

THEOREM 7. Every netlike continuum is the image of an arc under
a conlinuous map.

Proof. Let Y be a netlike continuum. By Theorem 6, Y is the image
of an arcwise connected semi-locally connected dendritic space X under
a one-to-one continuous map f. By Theorem 3 of [5], X is a dense subspace
of a dendritic continuum X'. By Theorem 3, f has a continuous extension
g to. X'. Finally, by Theorem 2 of [6], X' is the image of an arc A under
a continuous map h. Therefore, h-g is a continuous map of 4 onto Y.
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