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The well-known principle of circle-transformation of a linear rational
function (see [1], p. 160) says:

Suppose that w = f(z) = const s meromorphic in |2| < 4 oco. Then
w = f(2) transforms circles on the z-plane into circles on the w-plane, including
straight lines among circles, if and only if f is a linear rational function.

The purpose of this note is to discuss a problem similar to this prmclple,
l.e., to prove the following

THEOREM. Suppose that w = f(z) = const 8 an entire function of z.
Then w = f(z) transforms straight lines on the z-plane into parabolas on
the w-plane, including doubled half-closed straight lines among parabolas,
if and only if f is a quadratic function of z.

Proof. Let D be the domain where f'(2) #* 0. Since f # const, D
is not empty. Suppose that ¢ is an arbitrarily fixed point belonging to D.

Let E denote the following set on the real line:

(1) IE = {6 | Re(exp(i)f'(¢)) # 0}.

Since ¢ belongs to D, we have f'(¢) # 0. If we put a = arg{f’'(c)},
then we have

Re[exp{i(—a)}f' (¢)] = Re{exp(—ia)|f (c)lexp(ia)} = |f'(¢)| + 0.

Therefore, —ae E. Hence the set E is not empty. E is open, since
Re{exp(10)f'(¢)} is continuous on —oo < 6§ < + oo.
We put

(2) fle+texp(ip)} = p(t)+ig(?),

where t is a real variable, ¢ is an arbitrarily fixed real humber belonging
to E, and p(?) and ¢(t) are real-valued functions of t on — oo <t < + oo.
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Differentiating both sides of (2) with respeet to ¢ yields
(3) exp (ip)f’ {¢+texp(ig)} = p’ (1) +iq’(1).

Since ¢e E, by (1) and (3) we have

p'(0) = Refexp(ip)f'(c)} #

Hence, by the continuity of p’(¢) at t = 0, there exists an open inter-
val —d < ¢t < 6, where 0 is a positive real constant such that p’(f) # 0
on -6 <t< 4. Consequently, p(t) is a strictly monotonic function on
—0 < t< 0. Hence, if we put
(4) v =p(t) and y =q(?),
then (4) defines a one-valued function ¥y = h(x) of £ whose domain, by the
definition, is a certain open interval I.

By (2) we see that p(¢) and q(t) are infinitely many times differentiable
on —oo <t< +oo. Hence, on I-(qoe E) we have

(5) dylda® = {p'(t)q" () —p" ()¢ (V)}/p'(t)’
Differentiating both SIde.s of (3) with respect to ¢ yields
(6) exp (21p)f"'{c +texp (i)} = p"' (1) +1q" (1).

By (3) and (6) we have

(1) (g () —p" (¢ (1) = Im[exp (ig)f'{c +texp (ip)}f{c +texp (ip)}].
By (5) and (7), on I (¢e¢ E) we have

(8) d*y|da® = Im{exp (ig)f f"}/p’ (t)*,

where we abbreviate f'{c+texp(ip)} and f'{c+texp(ig)} to f and f",
respectively.

Differentiating both sides of (8) with respeet to ¢ and taking into
account the fact that Im(f”f’) = 0, on I (¢ E) we have

(9) d@y/dr® = [p' (t)Im{exp (2ip)J' "} —3p" (t)Im {exp (ip)f £ }1/p’ (1),

where f' and f'’ are as in (8), and by '’ we denote f'''{¢ + texp (i¢)}.
Differentiating both sides of (9) with respect to ¢ and simplifying
the resulting equality yield on I (pe E) the equation

(10) d*yldz* = [p’'(¢)’Im{exp(ig)f"f"" + exp(3ig)f f¥} —
—7p'()p" (t)Im {exp (249 Wf—
—3p'(t)p"" () Im{exp (ig)f [} +
+15p" (1) Im {exp (ip)f f"}1/p’ (1),

where f', f’ and f’' are as in (8) and (9), and by f* we denote
O {c+ texp(ip)}.
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By hypothesis, the graph of y = h(x) (re I) is a parabolic arc. Hence,
by a result proved in [2], we see that y = h(x) satisfies on I

(11) 3(@yda?) (@y|do*) = 5(dy/da’)
Substituting (8), (9) and (10) into (11), on —0 <t < 0 (pe E) we
have
(12)  3Im{exp(ig)f "} [p'(t)*Im {exp (ip)f" f"’ + exp (3 ip)f f*} —
—7p" (t)p" (1) Im {exp (2ip)f f"'} —3p" (t)p"" () Im {exp (ip)f '} +
+15p" (1) Im {exp (ip)f f'}]1— 3 [p’ (1) Im {exp(2ip)f f"'} —
—3p" (t)Im{exp (ig)f f'}* =0,
where f',f’,f" and f% are as in (8), (9) and (10).
Putting ¢ = 0 in (12), we obtain (pe E)
(13)  3Im{exp(ip)f (c)f"( }[p (0)* I {exp (ip)f" ()" (¢) +
+ exp 3'<Pf )f¥(e)} — Tp'(0)p” (0) Im {exp (2ip) f (¢) " (¢)} —
—3p'(0)p"” Im{ehp( )f' (e)f” (e)} +
+15p"(0) 2Im{exp (i) (e)f"" (¢ )} —
—5[p'(0)Im{exp(2ig)f (¢)f" (¢)} —
—3p”" (0)Im {exp (ig)f ()" (e)} T = 0.
Putting ¢ = 0 in (3) and (6), we have (pe E)

(14) p'(0) = Re{exp(ip)f (o)},
(15) p"(0) = Re{exp(2ip)f" (c)}

Differentiating both sides of (6) with respect to ¢ and putting { = 0
in the resulting equality yield

(16) p"""(0) = Relexp(3ip)f"(c)}.

By (14), (15) and (16) and using the formulas Re(4) = (1/2)(4 +A4),
Im(4) = (1/2i)(4 —A4) (A complex), we see that the left-hand
side of (13).is a trigonometric polynomial in ¢ of order 6 if we consider ¢
as a real variable. Let ti.. coeificient of exp(6i¢) of this trigonometric
polynomial be a,. Then, after some computations, we infer that
(17)  ag = BF 120 [(f 12 {F' fO12¢} = T(f [2)(f" [2){f f" |24} —

=32V 2SS 120 + 187 20K Ff )23 —

— 3L 2P T 12— (2P £ 124y 3(F 12 (P £ |23} +
+9(F" 20 (' 23]

— (1/16) [f (2)1*{3f" ()9 () ~ 51" ()} .
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Since (13) holds on the non-empty open set £ on the real line, by
the Identity Theorem, (13) holds for all complex ¢. Consequently, (13)
holds for all real ¢. Since the representation of a trigonometric polynomial
1s unique, by (13) we have .
(18) ag = 0.

Since ¢ belongs to D, we have

(19) f'le) #0.
By (17), (18) and (19), we obtain

(20) 31" (e)f¥(e) —5f" (¢ = 0.
Thus, in D we have

(21) 3" (a)fP(2) —Bf" (2)* = 0,

since ¢ in (20) is an arbitrarily fixed point belonging to D.
By the Identity Theorem we see that (21) holds in |2] < + oo.
Next, we prove that in |2| < 4 oo

(22) [’ (2) = const.

The proof is by contradiction. Assume contrary. Then, since f’'(z)
is a non-constant entire function of 2, we can write the power series expan-
sion of f''(2) in |2| < 4+ oo in the form

(23) f'(2) = be+by2®+ ...,

where p is a positive integer, and b,, b, are complex constants with b, # 0.
Substituting (23) into (21) and equating the coefficients of 2*#~*
of both sides of the resulting equality, we obtain

3p(p—1)b—5(pb,) =0 or p(—2p—3)b; =0 or b,=0,

which contradicts the fact that b, # 0.
By (22), in |2| < 4 oo we have

(24) f(z) = &2 +pz+y,

where a, # and y are complex constants.

Since w = f(z) transforms straight lines on the z-plane into parabolas
on the w-plane, including doubled half-closed straight lines among parabolas,
a in (24) must be non-zero. Thus, the “only if” part of the Theorem is
proved. The proof of the “if” part of the Theorem is clear.
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