1975

FASC. 1

ON ENTIRE FUNCTIONS WHICH TRANSFORM STRAIGHT LINES INTO PARABOLAS

ВY

HIROSHI HARUKI (WATERLOO, ONTARIO)

The well-known principle of circle-transformation of a linear rational function (see [1], p. 160) says:

Suppose that $w = f(z) \not\equiv \text{const}$ is meromorphic in $|z| < +\infty$. Then w = f(z) transforms circles on the z-plane into circles on the w-plane, including straight lines among circles, if and only if f is a linear rational function.

The purpose of this note is to discuss a problem similar to this principle, i.e., to prove the following

THEOREM. Suppose that $w = f(z) \not\equiv \text{const}$ is an entire function of z. Then w = f(z) transforms straight lines on the z-plane into parabolas on the w-plane, including doubled half-closed straight lines among parabolas, if and only if f is a quadratic function of z.

Proof. Let D be the domain where $f'(z) \neq 0$. Since $f \not\equiv \text{const}$, D is not empty. Suppose that c is an arbitrarily fixed point belonging to D. Let E denote the following set on the real line:

(1)
$$E = \{\theta \mid \operatorname{Re}(\exp(i\theta)f'(c)) \neq 0\}.$$

Since c belongs to D, we have $f'(c) \neq 0$. If we put $a = \arg\{f'(c)\}\$, then we have

$$\operatorname{Re}[\exp\{i(-a)\}f'(c)] = \operatorname{Re}\{\exp(-ia)|f'(c)|\exp(ia)\} = |f'(c)| \neq 0.$$

Therefore, $-a \in E$. Hence the set E is not empty. E is open, since $\text{Re}\{\exp(i\theta)f'(c)\}$ is continuous on $-\infty < \theta < +\infty$.

We put

(2)
$$f\{c+t\exp(i\varphi)\} = p(t)+iq(t),$$

where t is a real variable, φ is an arbitrarily fixed real number belonging to E, and p(t) and q(t) are real-valued functions of t on $-\infty < t < +\infty$.

Differentiating both sides of (2) with respect to t yields

(3)
$$\exp(i\varphi)f'\{c+t\exp(i\varphi)\} = p'(t)+iq'(t).$$

Since $\varphi \in E$, by (1) and (3) we have

$$p'(0) = \operatorname{Re}\{\exp(i\varphi)f'(c)\} \neq 0.$$

Hence, by the continuity of p'(t) at t=0, there exists an open interval $-\delta < t < \delta$, where δ is a positive real constant such that $p'(t) \neq 0$ on $-\delta < t < \delta$. Consequently, p(t) is a strictly monotonic function on $-\delta < t < \delta$. Hence, if we put

$$(4) x = p(t) and y = q(t),$$

then (4) defines a one-valued function y = h(x) of x whose domain, by the definition, is a certain open interval I.

By (2) we see that p(t) and q(t) are infinitely many times differentiable on $-\infty < t < +\infty$. Hence, on $I(\varphi \in E)$ we have

(5)
$$d^2y/dx^2 = \{p'(t)q''(t) - p''(t)q'(t)\}/p'(t)^3.$$

Differentiating both sides of (3) with respect to t yields

(6)
$$\exp(2i\varphi)f''\{c+t\exp(i\varphi)\} = p''(t)+iq''(t).$$

By (3) and (6) we have

(7)
$$p'(t)q''(t) - p''(t)q'(t) = \operatorname{Im}\left[\exp\left(i\varphi\right)\widehat{f'\{c + t\exp\left(i\varphi\right)\}}f''\{c + t\exp\left(i\varphi\right)\}\right].$$
By (5) and (7), on $I\left(\varphi \in E\right)$ we have

(8)
$$d^{2}y/dx^{2} = \operatorname{Im}\{\exp(i\varphi)\bar{f}'f''\}/p'(t)^{3},$$

where we abbreviate $f'\{c + t\exp(i\varphi)\}$ and $f''\{c + t\exp(i\varphi)\}$ to f' and f'', respectively.

Differentiating both sides of (8) with respect to t and taking into account the fact that $\text{Im}(\bar{f}''f'')=0$, on $I(\varphi \in E)$ we have

(9)
$$d^3y/dx^3 = [p'(t) \operatorname{Im} \{ \exp(2i\varphi)\bar{f}'f''' \} - 3p''(t) \operatorname{Im} \{ \exp(i\varphi)\bar{f}'f'' \}]/p'(t)^5,$$

where f' and f'' are as in (8), and by f''' we denote $f'''\{c + t \exp(i\varphi)\}$.

Differentiating both sides of (9) with respect to t and simplifying the resulting equality yield on I ($\varphi \in E$) the equation

(10)
$$\frac{d^4y}{dx^4} = [p'(t)^2 \operatorname{Im} \{ \exp(i\varphi) \bar{f}'' f''' + \exp(3i\varphi) \bar{f}' f^{(4)} \} - \\ -7p'(t)p''(t) \operatorname{Im} \{ \exp(2i\varphi) \bar{f}' f''' \} - \\ -3p'(t)p'''(t) \operatorname{Im} \{ \exp(i\varphi) \bar{f}' f'' \} + \\ +15p''(t)^2 \operatorname{Im} \{ \exp(i\varphi) \bar{f}' f'' \}]/p'(t)^7,$$

where f', f'' and f''' are as in (8) and (9), and by $f^{(4)}$ we denote $f^{(4)}\{c+t\exp(i\varphi)\}$.

By hypothesis, the graph of y = h(x) ($x \in I$) is a parabolic arc. Hence, by a result proved in [2], we see that y = h(x) satisfies on I

(11)
$$3(d^2y/dx^2)(d^4y/dx^4) = 5(d^3y/dx^3)^2.$$

Substituting (8), (9) and (10) into (11), on $-\delta < t < \delta$ ($\varphi \in E$) we have

(12)
$$3\operatorname{Im}\{\exp(i\varphi)\bar{f}'f''\}[p'(t)^2\operatorname{Im}\{\exp(i\varphi)\bar{f}''f'''+\exp(3i\varphi)\bar{f}'f^{(4)}\}-$$

 $-7p'(t)p''(t)\operatorname{Im}\{\exp(2i\varphi)\bar{f}'f'''\}-3p'(t)p'''(t)\operatorname{Im}\{\exp(i\varphi)\bar{f}'f''\}+$
 $+15p'''(t)^2\operatorname{Im}\{\exp(i\varphi)\bar{f}'f''\}]-5[p'(t)\operatorname{Im}\{\exp(2i\varphi)\bar{f}'f'''\}-$
 $-3p'''(t)\operatorname{Im}\{\exp(i\varphi)\bar{f}'f''\}]^2=0,$

where f', f'', f''' and $f^{(4)}$ are as in (8), (9) and (10). Putting t = 0 in (12), we obtain $(\varphi \in E)$

(13)
$$3\operatorname{Im}\{\exp(i\varphi)\overline{f'(c)}f''(c)\}[p'(0)^{2}\operatorname{Im}\{\exp(i\varphi)\overline{f''(c)}f'''(c)+ + \exp(3i\varphi)\overline{f'(c)}f''(c)\} - 7p'(0)p'''(0)\operatorname{Im}\{\exp(2i\varphi)\overline{f'(c)}f'''(c)\} - 3p'(0)p'''(0)\operatorname{Im}\{\exp(i\varphi)\overline{f'(c)}f''(c)\} + + 15p''(0)^{2}\operatorname{Im}\{\exp(i\varphi)\overline{f'(c)}f''(c)\}] - - 5[p'(0)\operatorname{Im}\{\exp(2i\varphi)\overline{f'(c)}f'''(c)\}] - - 3p''(0)\operatorname{Im}\{\exp(i\varphi)\overline{f'(c)}f''(c)\}]^{2} = 0.$$

Putting t = 0 in (3) and (6), we have $(\varphi \in E)$

(14)
$$p'(0) = \operatorname{Re}\{\exp(i\varphi)f'(c)\},\$$

$$p''(0) = \operatorname{Re} \{ \exp(2i\varphi) f''(c) \}.$$

Differentiating both sides of (6) with respect to t and putting t=0 in the resulting equality yield

$$p^{\prime\prime\prime}(0) = \operatorname{Re}\left\{\exp(3i\varphi)f^{\prime\prime\prime}(c)\right\}.$$

By (14), (15) and (16) and using the formulas $\operatorname{Re}(A) = (1/2)(A + \bar{A})$, $\operatorname{Im}(A) = (1/2i)(A - \bar{A})$ (A complex), we see that the left-hand side of (13) is a trigonometric polynomial in φ of order 6 if we consider φ as a real variable. Let the coefficient of $\exp(6i\varphi)$ of this trigonometric polynomial be a_6 . Then, after some computations, we infer that

$$(17) a_6 = (3\bar{f}'f''/2i) [(f'/2)^2 \{\bar{f}'f^{(4)}/2i\} - 7(f'/2)(f''/2) \{\bar{f}'f'''/2i\} - \\ -3(f'/2)(f'''/2) \{\bar{f}'f'''/2i\} + 15(f''/2)^2 \{\bar{f}'f''/2i\}] - \\ -5[(f'/2)^2 \{\bar{f}'f'''/2i\}^2 - 2(f'/2) \{\bar{f}'f'''/2i\} \cdot 3(f''/2) \{\bar{f}'f''/2i\} + \\ +9(f''/2)^2 \{\bar{f}'f''/2i\}^2] \\ = -(1/16) |f'(c)|^4 \{3f''(c)f^{(4)}(c) - 5f'''(c)^2\}.$$

Since (13) holds on the non-empty open set E on the real line, by the Identity Theorem, (13) holds for all complex φ . Consequently, (13) holds for all real φ . Since the representation of a trigonometric polynomial is unique, by (13) we have

$$a_6=0.$$

Since c belongs to D, we have

$$f'(c) \neq 0.$$

By (17), (18) and (19), we obtain

(20)
$$3f''(c)f^{(4)}(c) - 5f'''(c)^2 = 0.$$

Thus, in D we have

(21)
$$3f''(z)f^{(4)}(z) - 5f'''(z)^2 = 0,$$

since c in (20) is an arbitrarily fixed point belonging to D.

By the Identity Theorem we see that (21) holds in $|z| < +\infty$.

Next, we prove that in $|z| < +\infty$

$$(22) f''(z) = const.$$

The proof is by contradiction. Assume contrary. Then, since f''(z) is a non-constant entire function of z, we can write the power series expansion of f''(z) in $|z| < +\infty$ in the form

(23)
$$f''(z) = b_0 + b_p z^p + \dots,$$

where p is a positive integer, and b_0 , b_p are complex constants with $b_p \neq 0$. Substituting (23) into (21) and equating the coefficients of z^{2p-2} of both sides of the resulting equality, we obtain

$$3p(p-1)b_p^2 - 5(pb_p)^2 = 0$$
 or $p(-2p-3)b_p^2 = 0$ or $b_p = 0$,

which contradicts the fact that $b_p \neq 0$.

By (22), in $|z| < +\infty$ we have

$$f(z) = az^2 + \beta z + \gamma,$$

where α, β and γ are complex constants.

Since w = f(z) transforms straight lines on the z-plane into parabolas on the w-plane, including doubled half-closed straight lines among parabolas, a in (24) must be non-zero. Thus, the "only if" part of the Theorem is proved. The proof of the "if" part of the Theorem is clear.

REFERENCES

- [1] Z. Nehari, Conformal mapping, New York 1952.
- [2] M. R. Perrin, Sur quelques conséquences géométriques de l'équation différentielle des coniques, Bulletin de la Société Mathématique de France 31 (1903), p. 54-64.

Reçu par la Rédaction le 17. 5. 1974