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THE DAM WITH CONTENT-DEPENDENT INPUT AND OUTPUT

L. Introduction. We consider the infinite dam in which the ;onten:
Process alternatively increases (input phase) or decreases (output p as?t}?e
random time-intervals. The input and output rates depend on the state é)}
Process. Such a model is a generalization of the_model cons1deredhby E;\e/f;
-and Miller [2] (see also [6]) with alternatively linear changes of the con

TOcCess. ' - ; i

p Wse are interested in two problems. The first one is to investigate the
t of some random deformations of both phases on the Cf’,nte.n t and ;)]I;
wet period. Such investigations were performed _by quocmskld([“]’tgnt_
the dam with compound renewal (compound Poisson) 1npx_1t an (i;)nusm
endent output. In Section 3, making analogous assumptlonsh an teg
same methods as jn [4] and [5], we give theorems about the expecth
ease of the contents at the initial moments of both phases and about the
€xpected value of the wet period. :

pe(_:rhe second problem rlc):gards the stationary beha\{lour'of the co:;?;:{xt
Process. In Section 4.1 we deal with the existence of invariant probability
T osures for Markov chains imbedded at the initial moments of both phasesé
The investigations base on the paper [1] by Ginlar. In Section 4.2 we assumis
that the extended Markoy process, induced by the content -pqu)ess., .
Stationary and we investigate relations between t.he stationary distri lllfl'on
of the Process and the invariant measures of imbedded ‘Markov c al:[llse.
Moreover, assuming that the output phases are exponential, we give
forms of Stationary distributions. Here we apply the paper [3].

2. The model.

2.1. Content process. Let (@, o, Pr) be a probability space, #, =b[0; oo)}
R+ =(0, 0) and let By, B, stand for the a-a'lgebras. of Borfel SE se li (l)e
these half-lines, respectively. Introduce the notation obligatory ln_ ; efW :)he
paper: 1 =1(x), xe Z, for the function equal to 1 on a space %; I, for
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14 M. Jankiewicz

indicator of a set 4; feb# for a real bounded #-measurable function and
a g-algebra #; y" for the nth iterate of an operator y, n =0, 1, ..., where

7°f =f for feb#; E, f(A) = j'f(u)dPr{A u} for a real function f

and a random variable 4; Y for a stochastlc process {Y(t), t > 0); Y= {Y,,
n=0,1,...} and ¥, = Yo, Yy, ..., Y,} for a sequence of random variables
Yo. Y1, ...

Suppose we are given the following:

(a) a random variable X}: Q - &, ,

. (b) sequences of moments 7,,.,, m=0,1,..., (1o =0), such that the
distances tp, = T2 3 —T2m+1 -4 are positive independent random variables
with common distribution function H, and finite mean 1/u,, a = 1, 0; the
sequences t', a =1, 0, are also independent,

(c) real functions r,, a = 1, 0, positive, monotone in #, and such that
o

r1(0) =0, ro(0) > G, j(l/ro(u))du -

Define the content process X for the distances #* and for the intensity
functions r,, a=1, 0. Assume that the content X (f) decreases with intensity
r (X (t)) or alternatively increases with intensity ro(X (1)) with regard to’
whether it is in the output or input phase Hence during the output phase
the content process is subnntted to the functlon 41=q:(c, 1), t=0, ¢c>0,
fulfilling the differential equatlon

(1y —— = =ry(qy)

with initial value g, (c, 0) = c; during the input phase the content process is
submitted to the function: g, = gy(c, t), =0, ¢ > 0, fulﬁlhng the differential
equation

d
(2) ‘;lto ro(qo)

with initial value g, (c 0) =c. N
Let R, denote the antiderivatives for 1/r, such that R,(0) = 0, provided
there exist R,(0) < oo, a =1, 0. Then the solutions of (1) and (2) can be

presented as follows: if j(l/rl (W)du < o0 then

LH(R(0=1), 0<t<R(0),

. 1
() ()= {0, t > Ry(c), ¢ >0;

if cj(l/rl (u))du = co then
0

(4) g1 (c, ) =R7 (R (0)—1), t=0
(5) anlc. ) = RaYRa(c)+t), t=0, c=0.
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It follows from (1) that " { (1/r,(u))du is the time to emptiness of the content
J _

¢ >0 provided we are always in the output phase. If this time is finite then
we have (3), otherwise .we have (4). Similarly, from (2) we see that

[ (Urow)du is the time to obtain the content ¢ > 0 starting from zero
0

provided we are always in the input phase. If r, is positive, monotone in &,

and ro(0) > 0 then this time is finite for each ¢, 0 < ¢ <. Hence in (c) we

have assumed that the content never reaches infinity in-finite time.
Define two chains X% a =1, 0, as follows: for each a let

(6) Xg = .ql (X(l)’ ttl))’ X:l'*'l = ql—a(qa(X:l’ r:,n)’ trln;‘i—a)’ m = Os 1, see
Then we have

(7) | X (1) =q.(X5 t—T2m+1-0)

when 7,,,, <t <typ49.0 a=10, m=0,1,...

From the definition (7) we see that X% = X (f3m4-4), ic. the chain X!
gives the contents at the initial moments of the output phases and the chain
X° gives the contents at the initial moments of the input phases.

Simultaneously, because the distances r% are independent for m =0, 1, ..., it

follows from (6) that the chains X?, a = 1, 0, are Markov chains.
The model described in this" section is denoted by {t', t°, ry, ro}.

22. Wet period. Consider the content process X in the model {t, t°, r,,
ro} and for each ¢ > 0 define the random variable T(c) by the formula
T(c) = inf {t: X(t) =0|X(0) =c}.

>0

The random variable T(c) is called the wet period (the time to emptiness). In

this section we give the probability distribution of T(c) and its expected
value,

Assume that
(8) 3’(1/r1 (w)du <o  for some ¢ > 0.
0

Because r, is positive monotone in #, then from (8) we have

c

f(1/ry(w))du < o0 for each ¢ > 0.

0

For convenience we write sometimes R(c) instead of R, (c), i.e. R(c) =R, (c).
For the process T(c), ¢ >0, we have the relation (for each we Q)

R(c), if  td>Rio),
9 - .
) T {35+18+ T*(gola, (c. 1. Q). if tL < R(o.
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where T*(c), ¢ >0, is the wet period process defined for the sequence
t* =1t} 12, 13, 19, ... and for the functions r,, a=1, 0.
Let

glc, 1) = I;o.4(R(0)(1—H,y (R(0))),
Alc, ) ={(v,u): O<v+u<t, 0<v,0<u<R()}, t20,¢>0.

Define the operator { by the formula
(10) Uf(c, )= §f f(q0(q:(c, w), v), t—v—u)dHo(v)dH, (u),

Alea)

where feb®, x B,.
~ ProvosiTion 1. Let F (c, ) =Pr{T(c) <t}. Then F fulfils the equation

(11) F =g+yF,

which has a unique. solution of the form

ad

(12) F=Y y"g.

Proof. The equation (11) folloWs easily from (9) and from the fact that
the sequence t* does not depend on t} and t3.
We show the existence and uniqueness of the solution of (11) in a

standard way (see [1], Theorem (2.19) or Theorem (3.7)). From (10) it is easy
to verify that

0<gl(c, ) < 1-H, (R(©) < (e, n—1(c, 1).
The operator ¥ is nonnegative, thus we have for each N

N
0< Y ¥'g< f Y -y =1-y""'1<1.
n=0 n=0

Hence the series in (12) is convergent and it is the solution of (11). For the
uniqueness of the solution it is sufficient to show that lim y"F = 0. Because

0 < F <1 and ¥ is nonnegative, we have Pw
(13) O<y"F<y"l.

Using (10), it is not difficult to verify that

(14) Y . DS Pritd+3+ ... +th_ +td_, <1l

The right-hand side of (14) tends to zero when n — oo by the assumption that
tws m= 0,1, ..., are positive, independent and identically distributed. Hence
and from (13) and (14) we have Iimy"F=0. m

n—a
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The random variable T(c) may be improper. In order to find the

probability Pr {T(c) < oo} we introduce the random variables M (c) and S(c)
by the formulas

M) =min{m: X3 =0|X(0)=c}, S(c)=1sme, fOr every we.
mz20

The random variable M(c) is the index m of Tym+1 Such that X(t3m+1) = 0
and the random variable S (c) is the initial moment of the output phase being

last before T(c). Because Tom+q and t§, are finite for almost all w, one can
verify that

(15) Pr{T(c) <o} = Pr{S(c) < 0} = Pr{M(c) < o0}.
Define the Markov chain Y° by killing the Markov chain X° at the M (c)-th
Step. The transition kernel P of Y° is given as follows:

R(gg(x,v))

P(x, A) = ade,,(u) [ dH,(w)1,(q,(q0(x, ), u)), x>0, Ac%B,.
0 0

Denote by ¢ the operator on feb%#, such that
of ()= [ f() P(x, dy).
o

ProrosiTion 2. Let heb®B, be the maximal solution of the equation
(16) f=of 0<f<1,
Then we haye

17 Pr{T(c) < w0} = 1=h(0).

Proof. Let h = lim ¢"1. Because 1 > @l > @*1> ..., h is the solu-

tion of (16) and 0 < hzof If f is any other solution of (16) then f = ¢"f < ¢"1

for all n>1: therefore f < h. For each n we have

Pr{M(c) > n} = ¢"1(0),

whence and from (15) we obtain (17). m
Assume that T(c) is proper and there exists the expected value @(c)
=ET(c) < . Introduce the function 7 and the operator ¥ by the formulas

R{c) .
glo)= | (1—H;(w)du+(1/ue)H (R(0), ¢>0,

1]
R(c)

W@ = [ dHy@) | dHo®) ] (ge(a: (e, 4, v))

0

for a #, -measurable function 7. In view of Proposition 1 we can formulate
a similar one for the expected value @ (c).

ProrosiTiON 3. The function © fulfils the equation

(18) 0 =g()+¥0(c), c>0,
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which gives the only expected value of T(c) and
(19) @) = j:o Y"g(c), c>0.
Proof. By the assumption @(c) < oo we have
O(c) = :f Pr{T(c) >t} dt.

From (11) the function F(c, ) = Pr{T(c) >t} fulfils the equation
(20) F=g+yF,
where
glc, ) = Iy ) (R())(1— Hy (R(0)) + H, (R(c)—¥1(c, 1)
and the operator ¥ is defined by (10). Hence we have
0< g(c‘t) < le, )—=yl(c, ).
The same arguments as in the proof of Proposition 1 allow to show that the

equation (20) has a unique solution of the form F(c,t) = Z l//"g(c t).
n=0
Simultaneously, it is easy to verify that

g g(C, t)dt = g-(C),
TR, 0dt =§"h(@), n=1,2,..
0

for each h such that [ h(c, t)dt = h(c). Hence ©(c) fulfils the equation (18).
0

From Lebesgue’s theorem we obtain

O(c) = I Z Y"g(c, t)ydt = Zo ¥"glc), c¢>0.

0 n=0

Thus @(c) is uniquely determined by the function § and the operator .

3. Random deformations.

3.1. Markov chains. Consider random deformations of the distances
between consecutive initial moments of the phases, separately for output and
input.

The sequence of mdependent random variables A is called (see [4])
random deformation of the sequence of independent random variables U if the
pairs (U,, 4,), n=0, 1, ... are independent, U,+ 4, >0 and E(4,|U,) = 0.

Let A° be the random deformation of ¢°, a = 1, 0. Because we consider
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It of such a
the deformation separately for each a, then, as the resu
deformation, we obtain new models

{i’l, to, rl, ro} and {tl P P, rl, ro}’
where
0 = .0 -
ho=th+d4l, R =1244° m=0,1,

denoted
The Markov chains defined analogously to (6) for these rnold::.l(smz;re en
by X!, X° and X!, %°, respectively. Thus we have the relati

v by 0
(21) o = X3, X::+1 = CIO(‘h (Xm» tm)s tm)’
= 7o 40y 1
(22) Xg =4, (X(lj, i%), Xr(r)H-i =(q, (qo(Xg, tm)a tm+1),
7 10
(23) 0=X5, Xnii=4q0(q:(Xn tn), 1),

g 10}, ¢1 m=0,1,...
(24 X8=q,(X3,td), X%, =a1(20(RS, D), ts),

] i he content
Now we prove that the deformation of output or input increases t
in expectation.

] : s convex then
THEOREM 1. If the function r, is increasing concave and r(t,ht: onvex ther
the random deformation of the output phase increases |
expectation, i.e.

X i1, A= =0,1,...
(25) E(X;’n+1|tr1n+l—as tr?l)2 m+ 1> a 1: Oa m

: - ing convex then
~ THEOREM 2. If the function r, is concave and rq is ot T expectation,
the random deformation of the input phase increases the con
ie. ‘

-~ a —_' = 0, 19 tee
% ERlthi )3 X, a=10m ing the
For the proofs of these theorems simple pr.otf)eﬁrr;s cc(()):l (t:e:rlénfseful.
convexity (concavity) of the functions e @ =1,0, wit

: dual results
We formulate these properties in two lemmas. We write some
Using square brackets,

- LEmMMA 1.

j j or
(@) If the function r, is increasing [decreasing] then ¢, f
“each

]
€ is convex with respect to t > 0 [concave o.n the set it: jlf;r(c’e;)c: 3}33
o lf the Junction ro s increasing [decreasing] then do for £ 0]
Convex with respect to t on the set {t: qo(c, 1) < 0} [conc for each t is
" Lemma 2 (@) If the function r, is convex [concave] theﬂ ;hf or ¢ 0.
Concave with respect to ¢ on the set {e: a1(c, ) >0} [conl;;er is convex with
() If the function r, is convex [concave] then gq for e 0]
réspect to ¢ on the set {c: go(c, t) < 0} [concave for ¢ > 0].

i f
Parts (a) of Lemmas 1 and 2 have been proved in [4], the proofs o
Parts (b) are analogous.
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Using Lemmas 1 and 2 we can prove Theorems 1 and 2. We use
mathematical induction and many times Jensen’s inequality (J.i.).

Proof of Theorem 1. We prove the formula (25) for a = 1; the proof
for a = 0 is similar. Using in sequence Lemma 2 (b) and J.i, Lemma 1(a) and
Ji. and the monotonicity of g, in ¢, Lemma 2(a) and Ji. and the
monotonicity of g, in ¢, the inductive assumption and the monotonicity of g,
and g, in ¢, we have from (1)

E(Xn+11tn, 15) = E(qo(q: (X1, %), t3)| 1L, £3)

> qo(E( ql(X,l,,,t,,,)lt,,,,t° t2)
>CIO( %(Xplm tm)‘trlm 15) to)
?CIO(‘I X:ln|fm 15 te—1)s Ehs t,‘,’,)
2 qo(qy(Xa th), th) = Xpiy. W

Proof of Theorem 2. We prove the formula (26) for a = 0; the proof
for a =1 is similar. Applying in turn Lemma 2(a) and J.i., Lemma 1(b) and
Ji. and the monotonicity of g; in ¢, Lemma 2(b) and Ji. and the
monotonicity of ¢g; in ¢, lastly the inductive assumption and the
monotonicity of g, and g, in ¢, we obtain in virtue of (4)

E(Xm+1lther, 19 =E (‘h(%(x £ s g I m+1s L )

?‘h( (%(Xg,rg.)lf;ﬂ,fo t:ﬂ-l)
‘h( (QO(Xr?u t,?,)lt;,“, tw)s T 1)
611(40 E(Xo|l'1 -1 t )
> 41 (g0 (X ta) tnsr) = X,?,H. e

It follows from Theorems I and 2 that the contemporary deformation of
output and input increases the content if the function r, is increasing convex
and r, is increasing concave.

The assumptions of convexity or concawty of the functions r,, a=1, 0,
in Theorems 1 and 2 are essential. In the following example we consider a
function r,, fulfilling the assumptions of Theorem 2 with the exception of
convexity, and we give such an input deformation which decreases the
content in expectation.

Example. Let us consider the model with deterministic distances t}
=1/2, t9 =2, m=0,1,... and with intensity functions of the form

=
2

=2 >0,

1/4 0t <1,
"o()— 1<t
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Assuming X§ = 5/3 we obtain from (6)
Xp=53, m=1,2,..., X°=23, m=0,1,...

' i bilit
Let us consider further the input deformation A° with the probability
distribution

Pridd=—1}=12=Pr{d%=1}, ‘m=0,1,...

Applying (23) and (24) we calculate |
PriX} =11/12} = Pr {®! = 17/12} = Pr{X? = 0} = Pr{X? = 5/12} = 1/2,
Pr{X}=1/4} =Pr{X} =23} =Pr{R =3/4} =Pr {Xl =7/6} = 1/4,
Pr{X9=0l=3/4, Pr{X?=1/6}=1/4,

Pr (X} =5/12) = Pr (X} = 11/12) = /8,
PriXi=1/4 =Pr'X}=3/4) =38,
PriX=01=1, m=3,4,...,
Prifl=14)=Pr{RL=34 =12, m=4,5,...
Hence it is easy to verify that E(X}) <5/3 and E(X%) <2/3 for m=1,2, ...

ntial

3.2. Wet period. Assume that the sequence t! has a ng“i‘;m;:;g::; d its
distribution, the random variable T'(c) defined in Section 2.2 is prog

mean @ (c) is finite. ) 0 Ve a new

Let us consider the random deformation 4° of t°. Thus we ha

isti 1S NEw
model if, 1, ,, to}. We indicate by ~ the characteristics of this
model.

7 si j j is
THEOREM 3. If the function r, is decreasmg. [mcreas;::g]ma::;i ;;:ase
easing [decreasing] then the random deformation .oj; ge p
eases [decreases] the expected value of the wet petiod, i.e.

6@> [<] 0@, c>0. o
We ptecedé, the proof of Theorem 3 with the following lemma in whic

. ) o= 1
We give some properties of the function ©. Introduce the notation 1/v = 1/u,
+1/u,. N

incr
incr

(27)

. . . is
Lemma 3. If the function ry is decreasing [increasing] and r,
asing [decreasing] then © is convex [concave].

. version
Proof. We prove the version without brackets; the proof of the

... fulfils the
in brackets is similar. First, using Proposition 3 we show that @
integro-differential equation

incre

(28) ()= ;‘“}(‘6*)(1‘1‘21/#0—#1 O ()+u, E13@ (qo\(c, tg)))’ ¢>0.
1
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Indeed, substituting H, (u) = 1 —exp(—pu, u), u >0, in (18) we obtain
(29)
R{c)

O(c) = (1 —CXP( 1 R(C)))/'H‘ :0 @(40 (‘11 (c, u), to)) Py €Xp(— py “) du.

From (1) and (2) we obtain

a‘Iq/ac P (qa)/ra (C), a= 1: 0.

Using this and (29) we have

O'(c) = ~(~)(u1 exp(—py R(0))/v+E0 @ (q0(0, 16)) 1y exp(— s R(c))

R(c) a
= [ 2. E0®(q0(a: (c, w), §)) s exp(— 1y w)du).
o ou 0

Integrating by parts and using again (29) we obtain (28).
Now let D =0'(c+b)—O'(c) for ¢ >0 and b > 0. Define the random
variables T(c,d), ¢ >0, d >0, ¢ >d as follows:

T(c, d) = inf {t: X(f) <d|X(0) =c)

t>0

and let ©(c, d) = ET(c, d). Evidently T(c, 0) = T(c). Because the distances 1}
are exponential, we have

T(c+d) "= T(c+d, )+ T(c).

Hence, from (28) and r, (c+b) < ry(c) we obtain

Hq

1(0) _ 7
Let ¥} (t) = r,(t+b) for t > 0 and r5(0) = 0 and let r3(t) = ro(t+b) for ¢

> 0, b > 0. Further let T®(c), ¢ > 0, be the wet period process in the model

{14, 1% %, rb}. We also indicate by b the other characteristics of this model.
From the obvious equalities -

(30) D> ( (go(c+b, t3), c+b)—O(g0(c, 1), c)).

ct+b

j(l/r"(u)) U= _[ (1/r,(w)du g(l/r,(u))du, a=1,0,

and from (3) and..(5) we have
qalc, ) =gu(c+b,)=b, a=1,0.

Hence for arbitrary ¢ >0, b >0, r > 0 we obtain

(31) T’ (g (c, 1), ¢) = T(go(c+b, 1), c+b), for each weQ.
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If r, is decreasing and r, is increasing then from (1) and (2) we have the
inequalities

gc, )= q,(c,), a=1,0.
Thus for arbitrary ¢ >0, b>0, > 0, we have

(32) T (q5(c. 1), ¢) = T(go(c, 1), ¢) for each we Q.

Taking the expectations in (31) and (32) and substituting into (30) we see that
D20 for every c>0and b>0. ®

Proof of Theorem 3. We prove the version in brackets; the proof of

the version without brackets is similar. Using Lemma 3, Lemma 1(b) and
Jensen’s inequality, we have

E26 (40(41 (c, ). ) = EgE(6 (4o (4 (c, w), B)}ed)
< E,g@'(qo(ql(c, u),ty)) for ¢>0, u>0.

Now from Proposition 3 we obtain (see also (29))
(33)

6(c) = (1-exp(—p, R(C)))/v+R(jﬂ E2 6 (g0 (41 (¢, ), 3)) s €Xp (— py ) du
0
< (1—exp(~p; R0+

R(c
'F.'i‘) Etgé(%(‘h (c, u), tg))ﬂl exp(—u, u)du = O (c).
3

The last

equality in (33) follows from Proposition 3, i.e. @(c) is uniquely
d

ctermined by the fuaction g and the operator V.

4. Stationary behaviour.

4.1. Invariant measures. In this section we consider the. mgde]
O, 7o} and we give a sufficient condition for the existence of invariant
Probability measures N} of the Markov chains X% a=10 The
considerations are based on the paper [1]. o -

" Let 6, be the c-algebra generated by X{. Denote by P, the condltnopal
Probability Pr{-|a,} evaluated on {X} = x} and by E, the corresponding
€Xpectation.

Let Q° be-the operators defined by the transition probabilities for the
Markov chains X% a=1, 0. Thus for feb#, we have from (6)

G QU (x) = [ ] £(q-alaule: ), v))dH, (W dH, _,(0), a=1,0.
00 ‘

Let By = inf ro(x) and B, = sup r, (x).
xz0

xz0 :
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TueorReM 4. If the function r, is continuous non-decreasing in &, and r,

is continuous non-increasing in R, and if Bofue < B/, then there exist
invariant measures N, such that N} (Ry) =1, a=1,0.

Proof. We prove the existence of the invariant measure No Then the
existence of N{ follows from (6).

Choose ¢, such that B, < ¢, < By po/py and define Do = {x: ro(x) < co}.
Because r, is positive continuous non-increasing, the set 2, is non-empty
and it is of the form (dy, o). In addition, if xe 2, then from (2) we have

(35) qo(x, t) < x+cot, t>0.

Let us choose c¢; such that coui/uo <c; <pB; and define @,
= {x: r;(x) >¢;}. The set 2, is also non-empty and it is of the form
(dy, co). In addition, if q,(x, t)e 2, then from (1) we have
(36) | q.(x, ) <x—cyt, t>0.

Consider the set 9 = @4~ @,. If d = max(d,, d,) then @ = (d, ). Let us
define the chain S by the formula '
SO=X8, Sm+1 =Sm+C0t21-.'C1t:l+l, m=0, 1,...
Let also
U=min{m: $,¢2}, V=min{m: X5¢2}.

mz0 mz0

It follows from (35) and (36) that for fixed weQ we have: if X9,
X?, ..., X3 >d then X}, X},..., X1,, >d and

X,?, < Xg,_1+60t3_1‘“—cl t;.
Hence, if X3, X9, ..., X% > d then S,, >d and we obtain
(37) _ : :
AVo>m}={X3>d,X}>d,..., X0 >d} < {S,>d, S, >d,..., 5, >d}
={U> m}. |
Because the random variables %, a=1,0, m=0, 1, ... are independent
then the chain S forms a random walk. The constants c,, a = 1, 0, have been
chosen such that |
x{Sm+1 m} =c0/ﬂ0—c1/:u1 < 0.

Therefore the random walk S drifts to —oo and. for each ,x 0 we have
E.(U) < .

Define the operator % such that %f(x) = Q°(I,f)(x) for each febd,.
From (37) we obtain

S #19=E( =3 PiV>ni< ¥ P{U>n} =E,U).
n=0 : n=0 n=0
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Thus we have f ¥"1(x) < o for each x > 0. Now the same arguments as
n=0

in the proof of Theorem (4.4) in [1] allow to prove the existence and
finiteness of N .

4.2. Relations. Assume that the functions r, are continuous in %, ::1;;
that the Markov chains X® have the unique invariant probability meas r
N7, a=1,0. Now we investigate the relations. between the ;&au;};?hz
distributions of the content process and the inva.nant measures b,; .sim o
distances 4 or ¢ are exponential then these relations turn obutﬂt]o stationzrs;
Moreover, if ¢, are exponential, we find forms of bo
distributions and invariant measures. : :

In order to obtain the relations we use the paper [3] Whld:i ({1;11?0\:12}
€xtended piecewise Markov processes. An attentive look at the eX oo
Such processes given in [3] allows to find that the content Pfocss:e oments
by (7) is an extended piecewise Markov process with regenerati

it i arkov process
“2m+q- On the interval [t5,4,, Tomsary) (M, @ fixed) it is a Markov p
with transition probabilities P, as follows:

(38) Po(t, x, A) = 1,(q1-4(x, 1), ¢, x=0, AcB,.
Thus we have

j ed
ProposiTion 4. The content process X dfﬁ"ed by (7) hls a’:r :_’;Z:Zi "
Piecewise Markov process on (€, o, Pr) valued in (o, Bo) whose trajector
are continuous. ‘

The process X is a simple example of an extended piecewise Marl;(l)t\;
process; theédistril")utions of the distances t;, between regenerative mo‘ni]tion
depend only on g and not on the state X (T2m+a) Also the l:ranast e
probabilities P, are simple and do not depend on X (Tap+4)- Fur: t:lrs e
moments 1, , . there are no jumps of X and there are no contractio
output phase. | inui
Thg) continuity of the trajectories of X follows from the cofltmulgr;if;
Tespect to ¢ and from the lack of jumps at the regen::ratlve md let ‘3_?.
Let @, denote the o-algebra of all subsets of the set {0, 1} an 2

= %o xR, x{0, 1}, B =By xR, xB,. Introduce the Markov process X
by the formula

with

X0 =[X@, Z@, a@®l, 20,

i = —ta(t)=a
where X is the content process, Z(t) = Tam+at+1—b _
t) 1s
when_ t€[Tomsas Tam+g+1)r @a=0,1, m=0,1, ... The'comﬁg:llelalfzefn(azing
called residual-time process and the comPonent a(t) is ca g vernang
Process. Since both the transition probabilities P, and the distribu .

Dot depend ‘on the state X (Tam+q), the extended Markov process X is here
simplified.

valued in (R, B),
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It is known that the transition probabilities P of the Mr “-~v process X
induce the semi-group of contraction operators {Z,, t > 0. As. .me that X is
stationary. Then its stationary probability distribution N is an mvanant
measure for {2, t > 0). We assume that N is unique.

Introduce the notation: o/ (P,) for the infinitesimal operator induced by
the transition probabilities P,,

N,(A)=N(A xR, xla),
N,(x)=N,([0,x]), N;(x)=NS(0,x]), a=1,0.
Assume that there exist the der_ivatives

.
=—N;(x), x>0,

m) =N, and  nf (9=

dx

and that Ng (0) > 0.

Lemma 4. The marginal measures N, and the invariant probability
measures N7 fulfil the relations

(39) Ni_o(A) =0 j N7 () | Py_o(t, u, A)(1—H,(0)de
0- 0
(40) o (PN, (4) = v(N; (4)—-N i-a(4)),

@) o (In () = o(Ng (M~N7 (9), x>0, Ac Ao a=1,0.

Proof. In virtue of Theorems 2 and'3 in [3] it suffices to verify that for
each function f on %, real continuous vanishing at infinity and for a=1,0

42 lim sup| [ f@W) P, (t, x, du)—f (x)| =

1.0 x20 0-

By (38) we have.

43) i FO P, %, di) =1 (@1-a(, 1)

Using (1) and (2) we obtain

t

da(x, t)=X+(—1)"I (qa(x u)) du

Hence lim ¢,(x, )= x and hm f(ga(x, ) =f(x) umformly on . %Thus
10

by (43) we have (42).
“Now using Theorem 2 (b) from [3] we obxam (39) and using Theorem 3
from [3] we obtain (40).
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Since the transition probabilities P, are simple, it is easy to compute
d
A (P Ny (%, ) = (=1)r; —a ()2 Na((x, ).

Hence, substituting this into (40) for A4 = (x, o0) and passing to the N,, (x), we
obtain (41).

TueOREM 5. The marginal measures N, and the invariant probability
measures N, fulfil the relations

x Ro(x) ~ Ro() o

(44) N, (x)=v 0_[ N (du) g (1-Ho(n)dt, x>0,

(45) No(x) D E N7 (du) { (1-H,(@)dt, x=0,

(46) ny(x) =0 ?(I—Hl(Ri(u) R, (x))ro(x)dNY (), x>0,
(47) no(x) = v ?i( Ho(Ro(x)—Ro())/ry (x)dNg (w), x>0,

Where x = max (0, R, (u)— R, (x)).

Proof. Substituting (38) into (39) for 4 = [0, x] we get (44) and (45).
Further by (6) we have

x

NT(x) = Prigo (X2, 0 < x} = | Ho(Ro(x)—Ro(w)dNg (),

0__

NG (x) = Pr{q, (X1, t}) < x) = | (1—H; (R ()— Ry (x)))dNT ().

Ot §

Substituting these relations into (41) we get (46) and (47). ®

Assuming that th, or t2 are exponentlal we obtain simple relatlons
between N, and N or between N; and N7, respectively.

THEOREM 6. For fixed a=1,0, if Hy(u)=1—exp(—pau), u=>0, then
Ni-al¥) = 0/ Ni—alx),  x20. |

Proof. For exponentially distributed % we can transform (39) to the

(48)

form

(49) Nl—a(A) =0 T CXP(—#at)dt T’: Na+ (du)Pl—a(ts u, A)
0 0-

= v, (P-) N (4),

where .#,(P,), 1 > 0, denotes the resolvent induced by P,. It is known from
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the theory of semi-groups of contraction operators that #,(P,) = (Al
- (P,,))'_l, where I is the identity operator. Thus we have
(50) Mo Ry (P1- NS (A)— o (Py_ ) R, (P1_ ) NJ (4) = N (A).

From (50), (49) and (40) we get (48). m
Relations (46)—(48) allow to find the forms of the distributions N; and
N,. For 1), exponential we obtain the results formulated in Theorem 7.
Let us define the non-negative kernel K and its iterates

K (x, y) = p1 (1= Ho(Ro () = Ro ())/r (x),
K*(n+ l)(xa y) = } K*"(x, u)K(u, y)du = ]E K(x’ u)K*"(u, y)dll,

O0<y<x<ow, n=1,2,..., where K¥!' =K.
Using the obvious bound K(x, y) < p/r,(x), it is easy to verify that
(51) K*™ D (x, y) < (15 /(r () n!)) (R, (x) = R, ()"

O0<y<x<w, n=1,2,...

v ]

Thus the kernel K*(x, y) = ) K*'(x, y) is well defined and satisfies

n=1
K*(x, y) < prexp(p; Ry ()= R (M)/ri(x), 0<y<x<oo.

Moreover we introduce the notation
k= 1/(1+ j K*(u, O)du),
Ko (x, ») = po (1= Ho(Ro (x)— Ro (3))/ro ().

Treorem 7. If Hy(u) = 1—exp(—p u), u >0, and if | K*(u, 0)du < 0
: 0

then the distributions N,, N ,_7 a=1,0, have the form
(52) | N (%) = k(1+ [ K* (u, 0)du),

o .
(33) . ~ No(x) =(/u) Ng (),

(54) NT (x) = k(Ho(Ro (x))+} Ho(Ro (%)= Ro () K* (u, 0)du),
. . 0

(55) N, (x) = (vk/uq) (3 Ko(u, O)du+;f (3; Ko()), u) K*(u, 0)dudy),

x2=0
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Proof. Substituting (48) with a = 1 into (47) we have the equation

(56) ng (x) =K(x, O)NZ ({0})+} K(x, wyn (wdu, x>0.
0

Hence, iterating (56) n—1 times we obtain
(57} ng () =Ng({0}) ¥ K¥(x,0)+ [ K*"(x, wyng (Wdu, x>0.
j=1 0

Using (51) and the bounded convergence, letting n— oc in (57) we establi'sh
that the unique solution of (56) is ng (x) = Ng ({0}) K*(x, 0). It is a density

ff [ K*(u, 0)du < oo0. Thus we have (52) and by (48) we have also (53). The
0

formula (54) follows éasi]y from (52) and (6). The distribution N, is obtained

Substituting (52) and (54) into (40) with a = 1. In addition we can verify that
N{(0)+ No(o0) = 1.
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