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Abstract. Let (3) (M, G, F) and (b) (M, G, F,) be iwo abstract objects with the same group G.
We call the objects (a) and (b) abstractly equivalent when there is a pair (h, ¢) of mappings,
h a bijection of M onto M, and ¢ an automorphism of the group G, which satisfy the condition of
equivariance

F,(h(x), ¢(g)) = h(F(x,g)) for all xeM and geG.

We call the objects (a) and (b) geometrically equivalent when there is a bijection h: M — M which
satisfies the condition
F,(h(x)g) = h(F(x,g) Jor all xeM and geG.

It is obvious that geometrically equivalent objects are also abstractly equivalent, The example
given in this paper (Section 3) shows that the inverse implication is not true. Some conditions under
which abstractly equivalent objects are also geometrically equivalent are given, The definition and
some properties of pseudoinner automorphisms of a group are given in Section 4.

Introduction. The aim of the paper is to establish relations between
abstract and geometric equivalence of abstract objects, which were defined in
[1], part I, p. 21 (see also Section 1).

Firstly (Section 2), we observe that if the abstract equivalence is given by
a pair (h, @), where ¢ is an inner group automorphism, then the objects are
geometrically equivalent. However, the example in Section 3 shows that, in
general, abstractly equivalent objects need not be geometrically equivalent, In.
Section 5 we give certain conditions which ensure that abstractly equivalent
objects are also geometrically equivalent. The definition and some properties of
a pseudoinner automorphism are given in Section 4.

Some general remarks are added at the end of the paper.

1. Abstract and geometric equivalence of abstract objects. Since the
literature quoted here is hardly accessible and written in Polish, it seems
worthwhile to recall basic notions and their properties, which will be of use in
the sequel.
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By an abstract object we mean a triple
(1.1) (M, G, F),

where M is a non-empty set, G is a group and F is the action of the group G on
the set M, i.e, a mapping

F: MxG->M
which satisfies the translation equation
F(F(x,g,)9,) = F(x,g,-g,) TJor xeM and g,,9,€G
and the identity condition
F(x,e)=x fot xeM

([1], part I, p. 12).
If the set M in (1.1) is a differentiable manilold, G is a Lie group and the

operation F is differentiable, then (1.1) is a Lie group of transformations of
M onto M. This means that abstract objects yield a generalization of the
notion of a Lie transformation group, therefore all considerations presented
here concern in particular Lie groups.

Let us consider another abstract object

(12) (M4, Gy, F).

A pair of transformations (h, ), where h is a map from M into M, and ¢ is
a homomorphism of the group G into G,, is called an equivariant map of the
object (1.1) into object (1.2) if it satisfies: the condition

(1.3) F,(h(x),¢(g)) = h(F(x,g)) for all xeM and g€G.

One can check that the class of abstract objects with equivariant mappings
as morphisms and with composition as morphism operation forms a category.
This category is called the category of abstract objects and is denoted by 04
([1], part 1, p. 22).

A morphism (h, ¢) in this category is an isomorphism if and only if the
mapping h is a bijection and ¢ is a group isomorphism. If this is the case, we
say that objects (1.1) and (1.2) are abstractly equivalent.

Let OG denote the subcategory of 04 consisting of all objects having the
same group G and morphisms of the form (h, id;;). The subcategory OG is called
a G-geometry, or a geometry of the group G '([1], part 1, p. 20).

We call objects (1.1) and (1.2) geometrically equivalent whenever G = G,
and there exists a bijection h: M — M, such that the pair (h,id;) is an
isomorphism in the category OG, i.,, it satisfies the condition of equivariance,
which now has the form

(1.4) F,(h(x),g) = h(F(x,g)) for xeM and geG.
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It is obvious that geometrically equivalent objects (1.1) and (1.2) are
abstractly equivalent. However, the question arises whether the condition
G = G, is sufficient for abstractly equivalent objects (1.1) and (1.2) to be
geometrically equivalent. The example in Section 3 gives the negative answer to
this question.

2. A sufficient condition for geometric equivalence. Suppose that. objects
(1.1) and

(2.1) (M,,G,F,).

are abstractly equivalent. We show that if there is an isomorphism (h, ¢) of the
object (1.1) onto thé object (2.1) such that ¢ is an inner automorphism' of the
group G, then objects (1.1) and (2.1) are geometrically equivalent. Indeed, if ¢ is
an ifiner automorphism, then there is acG such that

(2.2) o(g) =a"'ga for geG.

In this case, the condition of equivariance (1.3) is of the form
(2.3) F,(h(x),a"'ga) = h(F(x, g))' for xeM and geG.
Using the translation equation, we get

2.4) F,(h(x),a~* ga) = F,(F,(F,(h(x),a).g).a~*).

One can easily check that for any ae G the mapping F(-,d) is a bijection
of M, onto M, having the property

Fi'(,0)=F (va™)
([2], p. 68, Lemma 1). So, the mapping
2.5) h(x) = Fi(h(x),a) for xeM

is a bijection M onto M,, as a composition of bijections.
Using (2.3), (2.4) and (2.5) we get

F,(F,(F(x),g)a™") = h(F(x g)),
and therefore
F,(f(x), g) = Fy(h(F(x, ) a) = A(F(x,9).

The last relation means that (1.4) is valid, ie. the objects are geometrically
equivalent.

3. An example. Let us consider a contravariant vector and a covariant
vector in the n-dimensional space, whert n > 2, We can denote them by triples:

(3.1) (R, GL(n,R),F), F(v,4)=A"",
(3.2) (R, GL(n,R),F,),  F,(uA)=1 A",
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where the character v stands for a one-column matrix (v') and u denotes
a one-row matrix (4). Symbols A-v and u-A~’ denote the ordinary multi-
plication of matrices.

Let h:R"—>R" be a bijection of the form h()=v" and let ¢
GL(n,R)—»GL(n,R) be an automorphism of GL(n, R) of the form
p(d) = (A~YT. We have

F,(h(v), 9(4)) = F (v",(47")T) = vT- AT = (4-0)" = h(F (v, 4))

for veR" and AeGL(n,R). So, the pair (h,¢) satisfies the condition of
equivariance (1.3) and therefore objects (3.1) and (3.2) are abstractly equivalent.

However, they are not geometrically equivalent. We give the proof for
n = 2. The proof for higher dimensions is quite analogous.

Suppose that objects (3.1) and (3.2), where n <=2, are geometrically
equivalent and let (4,id;) be an isomorphism of the object (3.1) onto the object
:) and the covector u® = f(e,). As we
know ([3], p. 97, Theorem 15.5), the group of isotropy of the vector e, in the
object (3.1) must be equal to the group of isotropy of the covector u° in the
object (3.2). The isotropy group of the vector e, in the object (3.1) is of the form

1
Gle,) = {(é Z;): a3, azeR, a3 #0}.

(3.2). Let us consider the vector e, =

2

Since the isotropy group of the vector (0,0) in the object (3.2) is equal to the
whole group GL(n,R), we have

(3.3) u® # (0,0).

On the other hand, we have by the equivariance condition
(34) u® A~ '=Ahie,)- A" ' =h(A-e,) for each matrix AeGL(2,R).
In the particular case of

11 10
1=(p1) we 4=(g3)
‘we get respectively

1 -1
@@y 7)) =6ty ana (] D)= ud)

Therefore
—uf+ud=ud and 2ud=ul.

Hence, u® = (0,0), which contradicts (3.3).
We can explain the geometrical meaning of this example in tne following
way. Contravariant and covariant vectors are equivalent as Klein spaces but

they are not equivalent as geometrical objects of the geometry of the group
GL(n, R).
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4. Pseudoinner automorphisms of a group. We propose the following
definition.

DerINITION 4.1. We will call an automorphism ¢: G— G pseudoinner
relative to an abstract object (M, G, F)if there exists a bijection h: M — M such
that the pair (h, @) satisfies the equivariance condition (1.3), i.e., the pair (, @) is
an automorphism in category OA. (By an automorphism of an object in
a category we mean an isomorphism of the object onto itself.) We will call an
automorphism ¢: G—G pseudoinner if it is pseudoinner relative to every
abstract object (M, G, F).

Let us observe that the set of all pseudoinner automorphisms of a group
G relative to an object (M, G, F) and the set of all pseudoinner automorphisms
are subgroups of the group of all automorphisms of G.

Remark 4.1. Let G be a subgroup of the group §,, of all bijections of a set
M and let F be a mapping of the form

F(x,g)=g(x) for xeM and geG.
Then an automorphism ¢ of the group G is pseudoinner relative to the object
(M, G, F) iff ¢ is the restriction of an inner automorphism of the group S,,, i.e,
there is heS,, such that ¢(g) = hgh™! for geG.

Proof. For ge G, we have:
h(F(x,9)) = F(h(x), p(g)), xeM,

h(g(x))= p(g) h(x), xeM,

or, equivalently, hg = @(g)h which gives the equality ¢(g) =hgh™! and
Remark 4.1 follows.

i.e.,

DEFINITION 4.2. Let us consider an object (1.1) and an automorphism ¢ of
the group G. Then
(4.1) (M,G,F,),  Fy(x,9)=F(x,¢(g))
is called the object generated by the object-(1.1) and the automorphism ¢.

Since the pair (id,,, ¢) satisfies the condition of equivariance, objects (1.1)
and (4.1) are abstractly equivalent.

LEMMA 4.1..ff objects (1.1) and (4.1) are geometrically equivalent, then the
automorphism ¢ is pseudoinner relative to the object (1.1).

Proof. If objects (1.1) and (4.1) are geometrically equivalent, then there is
an isomorphism (h,id;) of object (1.1) onto (4.1). We have
(b, @) = (idy; @) (h,idg)

and therefore (h,¢) is an automorphism of the object (1.1). Hence, ¢ is
pseudoinner relative to (1.1).
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THEOREM 4.1. Every inner automorphism of a group G is pseudoinner,

Proof. Let us consider an object (1.1) and let ¢ be an inner automorphism
of the group G. As we have noticed, (id,s, ¢) is an isomorphism of the object
(4.1), generated by the object (1.1) and the automorphism ¢, onto the object
(1.1). Since the automorphism ¢ is inner, we conclude from Section 2 that
objects (1.1) and (4.1) are geometrically equivalent. Hence, the automorphism
¢ is pseudoinner relative to the object (1.1) (see Lemma 4.1). Since there is no
restriction imposed upon (1.1), the automorphism ¢ is pseudoinner,

Now, we are facing the problem of recognizing when an automorphism is
pseudoinner relative to the object (1.1).

THEOREM 4.2. An automorphism ¢ of a group G is pseudoinner relative to the
object (1.1) iff there exists a bijection h: M — M which satisfies the following
conditions:

(a) the image h(M,) of each transitive fibre M, of the object (1.1) is
a transitive fibre,

(b) for any transitive fibre M, of the object (1.1) there is an element X, €M,
such that the image @(G(x,)) of the isotropy group G(x,) of the point x, is equal to
the isotropy group G(h(x,)) of the point h(x,); ie.,

o(G(x,)) = G(h(x,).

Proof. Let an automorphism ¢ of a group G be pseudoinner relative to
the object (1.1). Then there is a bijection h: M — M such that the pair (h, ¢) is
an automorphism of the object (1.1), i.e., (h, 9) is an isomorphism of the object
(1.1) onto itself. It follows from general theorems on isomorphisms of abstracts
(see [4], pp. 239-241) that the bijection h satisfies conditions (a) and (b).

Now, let us consider the abstract object (1.1), an automorphism ¢ of the
group G and a bijection i: M — M, which satisfies conditions (a) and (b). Let
h;: M—M be a mapping of the form

m() = F(h(x),0(g,) for xeM,,

where g, in an element of the group G such that F(x,g,) = x. Of course, we
must show that the definition of 4, does not depend on the choice of g,. Indeed,
let us notice that F(x,d,) = F(x,g,) iff there is g€ G(x,) such that §, = g, g,
So, using condition (b), we get

F(h(x), o(@,) = F(h(x), o(g," 90))

= F(h(x), ¢(g.)- @(g,)) = F(h(x), »(g,).
Observe that the mapping h, |y, M,—h(M) is a bijection. Hence, using
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hypothesis (a), we conclude that h,: M — M is also a bijection, To complete the
proof it is enough to verify the condition of equivariance for the pair (k,, ¢):

F(hy(x) 0(9)) = F(F(x, 0(g,)), ¢(g))
= F(h(x,), q’(g ' gx)) = hl(F(xr g))

Hence, the automorphism ¢ is pseudoinner relative to the object (1.1) and the
theorem is thus proved.

Note that for a transitive object (1.1) the existence of a bijection h which
satisfies conditions (a) and (b) is equivalent to the condition:

(c) there exist two points x,,x,€ M such that

@(G(xy)) = G(x,).
So, we have proved the following corollary.

COROLLARY 4.1. An automorphism ¢ of a group G is pseudoinner relative to
a transitive object (1.1) iff condition (c) is satisfied.

It is known (see [1], p. 26) that the isotropy groups of two points of the
same transitive fibre of an object (1.1) are conjugate, i.e.,

X, = F(x,,a)=G(x,;) =a G(x,;) a™ ..
Thus we have

COROLLARY 4.2. An automorphism ¢ of an abelian group G is pseudoinner
relative to a tranmsitive object (1.1) iff there is a point x,e€M such that

@(G(x,)) = G(xy)

5. Necessary and sufficient conditions for geometrical equivalence of objects.
Now we prove the main result.

THEOREM 5.1. Let (h, @) be an isomorphism of object (1.1) onto object (2.1).
Then objects (1.1) and (2.1) are geometrically equivalent iff the automorphism ¢ is
pseudoinner relative to the object (1.1).

Prool. The only if part. Lét (o) and (h,,id,) be isomorphisms of (1.1)
onto (2.1). Then
(hl- ! hs (0) = (hla idG)-l (h’ (P)

is an automorphism of the object (1.1) and therefore the automorphism ¢ is
pseudoinner relative to the object (1.1).

The if part. Let (h, ¢) be an isomorphism of (1.1) onto (2.1). If the
automorphism ¢ is pseudoinner relative to the object (1.1), then there is an
bijection #,: M — M such that the pair (h,, ) is an automorphism. Hence the
pair (hhi!,idg) = (h, ) (h,, @)~ ! is an isomorphism of the object (1.1) onto (2.1)
and therefore the two objects are geometrically equivalent.
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Theorems 4.2 and 5.1 together with Corollary 4.1 imply

COROLLARY 5.1. Let (h, ¢) be an isomorphism of object (1.1) onto object (2.1),
Then the objects (1.1) and (2.1) are geometrically equivalent iff there exists
a bijection h: M —M which satisfies conditions (a) and (b).

COROLLARY 5.2. Let (F, @) be an isomorphism of a transitive object (1.1) onto
an object (2.1). Then the objects (1.1) and (2.1) are geometrically equivalent iff
condition (c) is satisfied.

Lemma 4.1 and Theorem 5.1 imply the following two corollaries.

COROLLARY 5.3. Every object (M,,G,F,) abstractly equivalent to a fixed
object (1.1) is geometrically equivalent to it iff each automorphism @ .of the group
G is pseudoinner relative to the object (1.1).

COROLLARY 5.4. Any two abstractly equivalent objects with the same group
G are geometrically equivalent iff each automorphism ¢ of the group G is
pseudoinner.

6. Some remarks. As we see from Corollary 5.4, it may be interesting to
investigate the class K of all groups in which every automorphism is
pseudoinner. Of course, if each automorphism of a group G is inner then it is
also pseudoinner, but not vice versa, as the example of cyclic groups shows,

The example given in Section 3 and Theorem 5.1 imply that the automor-
phism ¢ of the group GL(n,R) (for n > 2) given by ¢(4) =(4~Y7 is not
pseudoinner relative to the object (3.1). So, an automorphism of a group
G need not be pseudoinner relative to the object (1.1). Besides, an auto-
morphism which is pseudoinner relative to.(1.1) need not be inner. Indeed,
consider an abelian group G such that Aut G # {id;} and the object

(6.1) (G,G,L), where L(x,9)=g"x.
The pair (¢, @) is an automorphism of the object (6.1) for each automorphism
¢ of the group G, since we have for any x,geG

L{e (x), 9() = ¢(g) ¢(x) = ¢(g"x) = ¢(L(x,9)).

Hence, each automorphism ¢ of the group G is pseudoinner relative to the
object (6.1), yet is not inner since the group G is abelian.

Concluding, let us notice the relations between the subgroups of the group
Aut G which we have defined:

IntG < PIntG < (PIntG), < Aut G,

where PIntG denotes the group of pseudoinner automorphisms of G and

(P Int G) is the group of automorphisms of G which are pseudoinner relative
to the object (M,G,F).
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