1975

FASC. 1

ON THE COMPLETENESS OF FLAT SURFACES IN S3

 \mathbf{BY}

THOMAS E. CECIL (POUGHKEEPSIE, N. Y.)

1. Introduction. A surface M is called *flat* if the Gaussian curvature of M is identically equal to zero. In a recent article [2], Sasaki produced many examples of complete flat surfaces isometrically immersed in S^3 , the hypersphere of radius 1 in R^4 .

Let $a(u^1)$, $b(u^2)$ be a pair of real-valued differentiable functions defined on the whole real line satisfying

$$0 < a(u^1) + b(u^2) < \pi$$
 for all u^1, u^2 .

Sasaki constructed a flat surface $M \subset S^3$ for which u^1 and u^2 are asymptotic coordinates forming a Tchebyshev net, i.e. the first and second fundamental forms of M in S^3 are given by

$$(1) g_{11} = g_{22} = 1, g_{12} = \cos(a(u^1) + b(u^2)),$$

(2)
$$h_{11} = h_{22} = 0, \quad h_{12} = \sin(a(u^1) + b(u^2)).$$

Since M is flat, it can be regarded as an isometric immersion of R^2 into S^3 , where R^2 has the Riemannian metric g in (1). Sasaki also stated sufficient conditions for the metric g to be complete. As he noted ([2], p. 173), these conditions were communicated to him from the author through K. Nomizu. These conditions are stated in the following theorem which is the main result of this paper:

THEOREM 1. Let $a(u^1)$, $b(u^2)$ be real-valued differentiable functions defined on the whole real line. Suppose there exist positive constants a, β , A, B such that

$$0 < a \leqslant a(u^1) + b(u^2) \leqslant \beta < \pi,$$

$$\left|rac{da}{du^1}
ight|\leqslant A\,, \quad \left|rac{db}{du^2}
ight|\leqslant B$$

for all values of u1, u2. Then the metric g on R2 defined by

$$g_{11} = g_{22} = 1, \quad g_{12} = \cos(a(u^1) + b(u^2))$$

is complete.

2. Preliminaries. Let $p = (u_0^1, u_0^2)$ be an arbitrary point in \mathbb{R}^2 . Let

$$X = X_1 rac{\partial}{\partial u^1} + X_2 rac{\partial}{\partial u^2}$$

be a vector which is tangent to R^2 at p such that X has unit length with respect to the metric g. We will show that the geodesic $\gamma(s)$ with initial position p and initial tangent vector X can be extended to arbitrarily large lengths. As is well known (see, for example, [3], p. 64), such a geodesic $\gamma(s) = (u^1(s), u^2(s))$ is found by solving the system of differential equations

(5)
$$\frac{d^2 u^k}{ds^2} + \sum_{i,j=1}^2 \frac{du^i}{ds} \frac{du^j}{ds} \Gamma^k_{ij} = 0, \quad k = 1, 2,$$

with initial conditions

(6)
$$u^1(0) = u_0^1$$
, $u^2(0) = u_0^2$, $\frac{du^1}{ds}(0) = X_1$, $\frac{du^2}{ds}(0) = X_2$,

where Γ^k_{ij} are the Christoffel symbols, derived from the metric g by

$$\Gamma^k_{ij} = rac{1}{2} \sum_{h=1}^2 g^{hk} igg(rac{\partial g_{ih}}{\partial u^j} + rac{\partial g_{jh}}{\partial u^i} - rac{\partial g_{ij}}{\partial u^h} igg).$$

For brevity, we let $\theta = a(u^1) + b(u^2)$. Then, using the explicit expression (1) for g, we can evaluate the Γ_{ij}^k , and the system (5) becomes

(7)
$$\frac{d^2 u^1}{ds^2} + (\cot \theta) \frac{da}{du^1} \left(\frac{du^1}{ds}\right)^2 - (\csc \theta) \frac{db}{du^2} \left(\frac{du^2}{ds}\right)^2 = 0,$$

$$\frac{d^2 u^2}{ds^2} - (\csc \theta) \frac{da}{du^1} \left(\frac{du^1}{ds}\right)^2 + (\cot \theta) \frac{db}{du^2} \left(\frac{du^2}{ds}\right)^2 = 0.$$

The system (7) can be reduced to a first-order system by introducing the coordinates

$$y^1 = u^1, \quad y^2 = u^2, \quad y^3 = \frac{du^1}{ds}, \quad y^4 = \frac{du^2}{ds}.$$

In terms of these new coordinates, the system (7) becomes

(8)
$$\frac{dy^{i}}{ds} = f_{i}(s, y^{1}, y^{2}, y^{3}, y^{4}), \quad i = 1, ..., 4,$$

where

$$f_1(s, y^1, y^2, y^3, y^4) = y^3, \quad f_2(s, y^1, y^2, y^3, y^4) = y^4,$$

$$f_3(s, y^1, y^2, y^3, y^4) = -(\cot \theta) \frac{da}{dy^1} (y^3)^2 + (\csc \theta) \frac{db}{dy^2} (y^4)^2,$$

$$f_4(s, y^1, y^2, y^3, y^4) = (\csc \theta) \frac{da}{dy^1} (y^3)^2 - (\cot \theta) \frac{db}{dy^2} (y^4)^2.$$

Initial conditions (6) become

$$(10) y^1(0) = u_0^1, y^2(0) = u_0^2, y^3(0) = X_1, y^4(0) = X_2.$$

Let $y = (y^1, y^2, y^3, y^4) \in \mathbb{R}^4$. We define a norm on \mathbb{R}^4 by

$$||y|| = \sum_{i=1}^{4} |y^{i}|,$$

and a function f from $R^1 \times R^4$ to R^4 by

$$f(s, y) = (f_1(s, y), f_2(s, y), f_3(s, y), f_4(s, y))$$

for $f_i(s, y)$, i = 1, ..., 4, given by (9). For y(0) as defined by (10), let $S \subset \mathbb{R}^1 \times \mathbb{R}^4$ be defined by

$$S = \{(s, y) \colon |s| \leqslant c, ||y - y(0)|| \leqslant d \text{ for some } c, d > 0\}.$$

Since all partial derivatives $\partial f_i/\partial y^k$ are continuous, f satisfies a Lipschitz condition on the compact region S; that is, there exists a constant K such that

$$||f(s, y) - f(s, z)|| \leq K||y - z||$$

for any points (s, y), $(s, z) \in S$. Likewise, since each f_i in (9) is a continuous function of s and y, the compactness of S implies the existence of a positive constant M such that $||f(s, y)|| \leq M$ for all $(s, y) \in S$. Thus, by the fundamental existence theorem for solutions of first-order systems (see, for example, [1], p. 251), there exists a unique solution y(s) of (8) subject to initial conditions (10) which is valid for $|s| \leq \delta$, where $\delta = \min\{c, d/M\}$.

Equivalently, there exists a solution $\gamma(s) = (u^1(s), u^2(s))$ of (7) with initial conditions (6) for values of s satisfying $|s| \leq \delta$. The existence of such a local solution is well known. To extend this local solution to arbitrarily large values of s, we need the following simple lemma:

LEMMA. Let $\gamma(s) = (u^1(s), u^2(s))$ be a local solution of (7) satisfying initial conditions (6) and existing for $|s| \leq \delta$ for some $\delta > 0$. Then, for α, β as in (3), the equation

$$\left| \frac{du^i}{ds} \right| \leqslant T = \max\{(1 - |\cos a|)^{-1/2}, (1 - |\cos \beta|)^{-1/2}\}, \quad i = 1, 2,$$

is valid on the interval $|s| \leq \delta$.

Proof. A solution $\gamma(s)$ of (7) with initial conditions (6) is a geodesic in \mathbb{R}^2 with the metric g which is parametrized by arc-length parameter s. Hence, the equation

$$(11) 1 = g\left(\frac{d\gamma}{ds}, \frac{d\gamma}{ds}\right) = \left(\frac{du^1}{ds}\right)^2 + \left(\frac{du^2}{ds}\right)^2 + 2(\cos\theta)\frac{du^1}{ds}\left(\frac{du^2}{ds}\right)$$

holds on the interval $|s| \leq \delta$. For any fixed value s_0 in the interval $|s| \leq \delta$, let

$$v = \left(\frac{du^1}{ds}\right)(s_0), \quad w = \left(\frac{du^2}{ds}\right)(s_0).$$

Then, for $s = s_0$, equation (11) becomes

$$1 = v^2 + w^2 + 2(\cos\theta)vw.$$

This is the equation of an ellipse in the vw-plane with major axis of length $(1-|\cos\theta|)^{-1/2}$. Since $\theta(u^1, u^2)$ must satisfy equation (3), the proof is complete.

3. Proof of Theorem 1. By (3) there exist constants P and Q such that

$$\left|\cot\left(\theta(u^1,\,u^2)\right)\right|\leqslant P\,,\quad \left|\csc\left(\theta(u^1,\,u^2)\right)\right|\leqslant Q$$

for all values of u^1 , u^2 . From (4), (9) and (12) we have, for any choice of s and y,

$$|f_3(s,y)| \leqslant PA(y^3)^2 + QB(y^4)^2, \quad |f_4(s,y)| \leqslant QA(y^3)^2 + PB(y^4)^2.$$

Thus (9) and (13) yield the following equation which holds for all choices of s and y:

$$||f(s,y)|| \leq |y^3| + |y^4| + A(P+Q)(y^3)^2 + B(P+Q)(y^4)^2.$$

Equations (6), (10), and the lemma yield

$$|y^3(0)| \leqslant T, \quad |y^4(0)| \leqslant T.$$

Let $S \subset \mathbb{R}^1 \times \mathbb{R}^4$ be the region

$$S = \{(s, y) \colon |s| \leqslant c, ||y - y(0)|| \leqslant d \text{ for some } c, d > 0\}.$$

Then (15) implies that, for y satisfying $||y-y(0)|| \le d$, we have (16) $|y^3| \le T+d$, $|y^4| \le T+d$.

From (14) and (16) we see that if $(s, y) \in S$, then

(17)
$$||f(s,y)|| \leq 2(T+d) + (A+B)(P+Q)(T+d)^{2}.$$

Let d = 1; then the fundamental existence theorem yields a solution of (8) with initial conditions (10) which exists for s satisfying

$$|s| \leqslant \delta = 1/(2(T+1)+(A+B)(P+Q)(T+1)^2).$$

Thus we have a solution $\gamma(s) = (u^1(s), u^2(s))$ of (7) with initial conditions (6) for s satisfying $|s| \le \delta$. To extend this solution to larger values of s, we proceed as follows. Let $s_1 = \delta/2$, and let $y(s_1)$ be the solution y(s) of (8) evaluated at $s = s_1$. Consider $S_1 \subset \mathbb{R}^1 \times \mathbb{R}^4$ defined by

$$S_1 = \{(s, y) \colon |s-s_1| \leqslant c, ||y-y(s_1)|| \leqslant d \text{ for } c, d > 0\}.$$

We recall that (14) is valid for any choice of s and y. Moreover, the lemma implies

$$(18) \qquad |y^3(s_1)| = \left|\frac{du^1}{ds}(s_1)\right| \leqslant T, \quad |y^4(s_1)| = \left|\frac{du^2}{ds}(s_1)\right| \leqslant T.$$

From (14) and (18) we see that (17) is valid for all $(s, y) \in S_1$. Thus we can proceed precisely as we did to obtain, for $|s-s_1| \leq \delta$, a geodesic $\eta(s)$ with initial position $\gamma(s_1)$ and initial tangent vector $(d\gamma/ds)(s_1)$. By the uniqueness of solutions to systems such as (8) with prescribed initial conditions, we see that $\eta(s)$ extends $\gamma(s)$ to a geodesic with initial conditions (6), existing for $0 \leq s \leq 3\delta/2$.

By choosing $s_2 = \delta$ and repeating the same process, we obtain, for $0 \le s \le 2\delta$, a geodesic $\gamma(s)$ with initial conditions (6). Obviously, a sufficient number of repetitions of this process yields a geodesic $\gamma(s)$ of arbitrarily large length having the prescribed initial conditions (6). Since the initial choices of p and X were arbitrary, we infer that R^2 with metric g is complete.

REFERENCES

- [1] E. A. Coddington, An introduction to ordinary differential equations, Englewood Cliffs, N. J., 1961.
- [2] S. Sasaki, On complete surfaces with Gaussian curvature zero in 3-sphere, Colloquium Mathematicum 26 (1972), p. 165-174.
- [3] T. J. Willmore, An introduction to differential geometry, London 1959.

Reçu par la Rédaction le 22. 12. 1973