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ON THE COMPLETENESS OF FLAT SURFACES IN §°
BY

THOMAS E. CECIL (POUGHKEEPSIE, N. Y))

1. Imtroduction. A surface M is called flat if the Gaussian curvature
of M is identically equal to zero. In a recent article [2], Sasaki produced
many examples of complete flat surfaces isometrically immersed in S°
the hypersphere of radius 1 in R

Let a(u'), b(u*) be a pair of real-valued differentiable functions de-
fined on the whole real line satisfying

0<a(u)+b(@®)< = for all o', u’.

Sasaki constructed a flat surface M < §8* for which ' and #* are
asymptotic coordinates forming a Tchebyshev net, i.e. the first and second
fundamental forms of M in §° are given by

(1) Ju = g2 =1, gy, = CO8 (“(“1)+b(“2))'9
(2) hiy = hgy =0,  hyy = sin(a(u') +b(u?)).

Since M is flat, it can be regarded as an isometric immersion of R’
into §°, where K’ has the Riemannian metric ¢ in (1). Sasaki also stated
sufficient conditions for the metric ¢ to be complete. As he noted ([2],
p. 173), these conditions were communicated to him from the author
through K. Nomizu. These conditions are stated in the following theorem
which is the main result of this paper:

THEOREM 1. Let a(u'), b(u®) be real-valued differentiable functions

defined on the whole real line. Suppose there exist positive constants a, f3,
A, B such that

(3) 0<a<a(w)+b@)<p<m,
da b |

4 — < —| < B

4) |du1 ’ ‘duz

for all values of u', w*. Then the metric g on R® defined by

9 = Ggae =1, g1 = cos(a(u‘)+b(u2))
is complete.
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2. Preliminaries. Let p = (u}, u2) be an arbitrary point in R% Let

X=X g X g
R
be a vector which is tangent to R? at p such that X has unit length with
respect to the metric g. We will show that the geodesic y(8) with initial
position p and initial tangent vector X can be extended to arbitrarily
large lengths. As is well known (see, for example, [3], p. 64), such a geodesic
y(8) = (ul(s), u*(s)) is found by solving the system of differential equations

&L u* 2 dut dud
ds* + ds —ds—rrl‘i=07 k=1,2,

t,j=1

(5)

with initial conditions
du’ du?
(6)  u'(0) =u;, ©(0) =uy, ——(0)=X,,
ds ds

where I'y; are the Christoffel symbols, derived from the metrlc g by

2
1 T i [ O9n ag]‘h g,
Iy = EH T .

(0) = X,

ow’ 0%’ out

For brevity, we let 6 = a(u') + b(«?). Then, using the explicit expres-
sion (1) for g, we can evaluate the I'};, and the system (5) becomes

2 ,1 dul 2 db duz 2
0 6 =0
0 e +(cot ) ( ds ) —(esel) g du? ( ds ) ’
a?u? (esc da [du'\® (cot db (du2 2 —o
s’ )t \Tas ) Tt gzl =0

The system (7) can be reduced to a first-order system by introducing
the coordinates

du' du?
Y=,y = y3:d87 4_d8.
In terms of these new coordinates, the system (7) becomes
dy* .
(8) : ds =fis, 995 9%9Y), i=1,..,4,
where
fi(s, 4%, ¥, ¥, o) =y, fus, 9,9, 9%y =9,
da db
o D vy 9%yt = — (cot 0)~@*1(y3)2+(cscﬂ) y (v*)*

da dab
fa(s, ¥, 4, 9%, 4*) = (cse0) — (¥°)* — (cot ) —5 (¥*)*.

dy
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Initial conditions (6) become
(10) ¥'(0) = w, Y(0) =u5, 9*(0) =X, 9'0)=X,.
Let y = (¥',¥*, ¥°, y*)« B*. We define a norm on R* by

4
il = > 1yl
i=1-

and a function f from R' x R* to R* by

f(s,y) = (fl(s’ Y)y f2(8,9), fa(s, ¥), fa(s, ?/))

for f;(s,y), i =1,...,4, given by (9). For y(0) as defined by (10), let
8 = R' x R* be defined by

S ={(s,y): IsI<e, lly—y(0)]| <d for some ¢, d > 0}.

Since all partial derivatives df;/0y* are continuous, f satisfies a Lip-
schitz condition on the compact region 8; that is, there exists a constant
K such that

If (8, y) —f(s, 2)I| < Klly —=|

for any points (s, y), (s, 2) e S. Likewise, since each f, in (9) is a continuous
function of s and y, the compactness of § implies the existence of a posi-
tive constant M such that |f(s, y)| < M for all (s, y)eS. Thus, by the
fundamental existence theorem for solutions of first-order systems (see,
for example, [1], p. 251), there exists @ unique solution y(s) of (8) subject
to initial conditions (10) which is valid for |s| < ¢, where § = min{e, d/M}.

Equivalently, there exists a solution y(s) = (u'(s), 4*(s)) of (7) with
initial conditions (6) for values of s satisfying |s| << 6. The existence of
such a local solution is well known. To extend this local solution to arbi-
trarily large values of s, we need the following simple lemma:

LEMMA. Let y(8) = (ul (8), u2(s)) be a local solution of (7) satisfying
initial conditions (6) and ewisting for 8| < 6 for some 8>0. Then, for
a, B as in (3), the equation

du’

< <T~= max {(1—leosal)™, (1—leosp)™"*}, ¢ =1,2,

18 valid on the interval |s| < 6.
Proof. A solution y(s) of (7) with initial conditions (6) is & geodesic
in R* with the metric g which is parametrized by arc-length parameter s.

Hence, the equation
(duz )2+2(cos 0) d’u/l(duz)

w1, ) ()
) T\ as) T \as + ds ds
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holds on the interval |s{ < §. For any fixed value s, in the interval |s| < 4,

let
. du' B du?
0 = ( ds .)(80)9 w = (ds )(80)-

Then, for s = s,, equation (11) becomes

L = v* +w’ +-2(cos 0)vw

This is the equation of an ellipse in the vw-plane with major axis
of length (1— |cos6|)~"2 Since 6(u', ) must satisfy equation (3), the
proof is complete.

3. Proof of Theorem 1. By (3) therc exist constants P and @ such that
(12) cot(0(u', w))| <P, |ese(B(n', v*)| <@

for all values of «', ¥*. From (4), (9) and (12) we have, for any choice
of 8 and y,

(13)  fs(s, I < PAW) +9BEY,  Ifi(s, )] ~ QA(W) +PB(y*).

Thus (9) and (13) yield the following equation which holds for all
choices of s and y:

(14) If (s, I < 19° + 1y*] + AP +Q)(#°) + B(P+Q)(y*)".
Equations (6), (10), and the lemma yield
(15) WrO)N<T, WOI<T

Let S « R' xR* be the region
8 = {(s,y): 18] <e¢, ly—y(0)]|<d for some ¢, d > 0}.
Then (15) implies that, for y satisfying [ly —y(0)|| <d, we have

(16) I <T+d, Iy<T-+d.
From (14) and (16) we see that if (8, y)e S, then
(17) (8, I < 2(T+d)--(A+B)(P+Q)(T +d).

Let ¢ = 1; then the fundamental existence theorem yields a solu-
tion of (8) with initial ¢onditions (10) which exists for s satisfying

18] < 6 = 1(2(T +1) -+ (A +B)(P +Q)(T +1)}).

Thus we have a solution y(s) = (u'(s), u (s)} of (7) with initial condi-
tions (6) for s satisfying |g| <I 4. To extend this solution to larger values
of 3, we proceed as follows. Let 8, = /2, and let y(s,) be the solution
y(8) of (8) evaluated at s = 8,. Consider 8,  R' xR* defined by

8 ={(8,y): ls—&|<e¢, ly—y(8)l<d for ¢,d > 0}.
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We recall that (14) is valid for any choice of s and y. Moreover, the
lemma implies

< T.

(81)

81)

, . du' du®
(18) 1y°(81)| = . (

| ds d

From (14) and (18) we see that (17) is valid for all (s, y)e 8,. Thus
we can proceed precisely as we did to obtain, for |s —s8;| < 0, a geodesic
n(8) with initial position y(s;) and initial tangent vector (dy/ds)(s,). By
the uniqueness of solutions to systems such as (8) with prescribed initial
conditions, we see that 7(8) extends y(s8) to a geodesic with initial condi-
tions (6), existing for 0 < s < 34/2.

By choosing s, == 6 and repeating the same process, we obtain,
for 0 <8< 24, a geodesic y(8) with initial conditions (6). Obviously,
» sufficient number of repetitions of this process yields a geodesic y(s)
of arbitrarily large length having the prescribed initial conditions (6).
Since the initial choices of p and X were arbitrary, we infer that R* with
metric g is complete.

< T9 |y4(81)| = !
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