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1. Introduction. A basic question in the study of a variety (equational
class) ¥~ of algebraic structures is the decision problem for the equational
theory of ¥". This is the problem of finding an effective procedure for
determining whether or not a given identity holds in 77, or of showing
that no such procedure exists. This is equivalent to the word problem
for 7 -free algebras A, i.e., the problem of deciding whether two terms
s and t represent the same element in A when the variables are replaced
by generators of A.

If v is a variety of lattices, then the equality s = ¢ is equivalent
to the conjunction of two inclusions, s <t¢ and t< s, and it therefore
suffices to obtain a decision procedure for inclusions. Now s is either
a variable, or else it is a lattice sum (join) or product (meet) of simpler
terms, and similarly for ¢. Of the nine cases that arise in this manner,
five are trivial and use only criteria that hold in every lattice:

a+b<tiff a<tand b<{,
s<cd iff s<<e¢ and s<d.

Accordingly, if s is @ sum or ¢ is a product, then the inclusion s <¢
is‘equivalent to the conjunction of two simpler inclusions. We may there-
fore assume that s is a variable or a product, and that ¢ is a variable or
a sum; i.e., we need only consider the four inclusions

r<Ly, ab<y, z<ct+d, ab<ctd,

where x and y are variables, a, b, c and d are arbitrary terms.
For the particular case when 7  is the class of all lattices the word
problem was solved by Whitman [5] who showed that in a free lattice

(W1) z<y iff 2 =y,
(W2) ab<y iff a<<y or b<y,
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(W3) < e+d iff x<c or z<d,

(W4) ab<c+d iff a<ct+d or b<c+d or ab<c¢ or ab< d.

The central result of this note asserts that the first three of Whitman’s
conditions hold in every relatively free lattice.

2. The principal theorem. In order to state the main theorem in
a somewhat more general form, we use in place of the notion of a relatively
free algebra a more general concept that was introduced in [1].

Definition 1. Given a class J of algebras, an algebra A4 is said
to be A -freely * generated by a set X if A is generated by X and every map
of X into a member B of o can be extended to a homomorphism of 4
into B. If in addition, 4 ¢ &, then A is said to be ) -freely generated by X.

LeMMA 2. Suppose L is a lattice generated by a set X and suppose
aeL. If, for every non-empty finite subset Y of X,

(1) [1Y < a implies that y < a for some yeX,

then (i) holds whenever Y is a non-empty finite subset of L.

Proof. Given a subset 8 of L we define P(a, S) to mean that every
non-empty finite subset Y of 8 satisfies (i), and we let S° be the set of
all sums of elements of 8, and S the set of all products of elements of &S.

By hypothesis P(a, X) holds, and it is obvious that P(a, §) implies
P(a, S7). We claim that P(a, S) also implies P(a, S°). In fact, suppose

y<La for all yeY,

where Y is a non-empty finite subset of S°. Each element y of Y is a sum
y = ' Z(y), where Z(y) is a non-empty finite subset of 8. Since y < q,
there exists z(y)eZ(y) such that z(y) < a. Since the elements z(y) belong
to 8, we infer from the property P(a, S) that their product « is not in-
cluded in a. Inasmuch as » < []Y, this implies that [[Y € a. Thus
P(a, S*) holds.

Let 8 = X and 8,,;, = (8,)” for n = 0,1, ... Then P(a, S,) holds
for each n. Since the sets S, form a non-decreasing sequence whose union
is L, and since the property P(a, 8) is of finite character, we conclude
that P(a, L) holds, and the proof is complete.

LEMMA 3. Consider the following three properties of a lattice L and
a generating set X for L:
(i) For any mon-empty finite subsets ¥ and Z of X, if [[¥Y < } Z,
then Y NZ # 0.
(i) X vs multiplicatively and additively irredundant.
(iii) For all x,yeX and a, b, c, deL, W1, W2 and W3 hold.
Properties (ii) and (iil) are equivalent and are implied by (i).
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Proof. Property (ii) means that if x< X and if ¥ and Z are non-empty
finite subsets of X, then

J1Y < = implies veX,r < }Z implies zeZ.

Thus (ii) is equivalent to the two special cases of (i) in which either
Z or Y consists of just one element.

If (ii) holds, then W1 is obviously satisfied, while W2 follows with
the aid of Lemma 2, and W3 can be inferred by duality. Thus (iii) holds.

Finally assume (iii). Suppose xe¢X, ¥ is a non-empty finite subset
of X, and []JY <. By an obvious generalization of W2 there exists
yeY with y < «, and it follows by W1 that # = yeY. Thus X is multi-
plicatively irredundant. Dually, X is additively irredundant, and (ii)
therefore holds.

THEOREM 4. If the class X of lattices is mon-trivial (i.e. at least one
member of A has more than one element), and if L is a lattice that is o -freely *
generated by a set X, then L and X have properties (i)-(iii) of Lemma 3.

Proof. Choose a member 4 of o with at least two distinct elements.
Then there exist a, be A such that a  b. Given disjoint non-empty finite
subsets Y and Z of X, choose a map f of X into A that maps each member
of Y onto a and every member of Z onto b. There exists a homomorphism
g of L into A that agrees with f on X. Since

9(JIY) =akb =9(32),
this shows that [J¥ < }Z.

3. Applications. It is well-known that in a free lattice the generating
set is uniquely determined. We now extend this result to relatively free
lattices.

THEOREM 5. Suppose X 18 a mon-trivial class of lattices and L is
A -freely * generated by X. Then X is the set of all those elements xeL that
are both multiplicatively and additively irreducible. Hence every set that
gewerates L contains X, and X is the only subset of L that A -freely * genera-
tes L.

Proof. By definition, an element x is said to be multiplicatively
irreducible if x = ab always implies that x = a or ® = b, and additive
irreducibility is defined dually. Since L and X satisfy conditions W2
and W3, it follows at once that every element of X is both additively
and multiplicatively irreducible in L. Copversely, each element x of L
that is additively and multiplicatively irreducible must belong to every
set that generates L, because L— {x} is a sublattice of L. The second part
of the conclusion is an immediate consequence of the first.

It is interesting to contrast the next theorem with the situation
that exists for relatively free groups, cf. Neumann [2].
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THEOREM 6. Suppose X is a mon-trivial class of lattices and L is
A -freely * generated by X. If the order of L is greater than four, then L is
directly indecomposable.

Proof. Suppose L = A X B, where A and B are non-trivial lattices.
For welL let u, and w, be the A-component of v and the B-component
of u, respectively, so that u = {u,, u,).

Consider any element xe¢X. For any a<¢A and beB,

& < &y b)+<a, 2,
and therefore, by W3, = < <%y, b) or x < {a, z,), i.e.,
,<b or z,<a.

Since this must hold for all aeA and beB, we infer that either A
has a zero element 0, and , = 04 or B has a zero element 0; and z, = 0.
Dually, either #, =1, or #;, =15. Now A and B were assumed to be
non-trivial, so that 0, 1, and Oy # 1, and we therefore infer that X
can have at most two elements, <0,, 15> and {1,, 05>, and from this
it follows that the order of L is at most four.

THEOREM 7. If Y is a non-emply finite set of variables, and if t is any
lattice term, then the inclusion ||Y <t either holds in every lattice or else
holds only in the one-element lattice.

Proof. It suffices to show that if the given inclusion holds in a non-
trivial relatively free lattice L when the variables are replaced by distinct
generators, then it holds in every lattice. By Lemma 2 together with
property (i) in Lemma 3 we see that [[Y <t,+1¢, holds iff either
[]Y <t or [JY<t, holds, and of course [[Y <, holds iff both
J]1Y <t, and [[Y <t¢, hold. Therefore the problem readily reduces to
the case in which ¢ is a variable, and in this case we again invoke the
property (i) in Lemma 3.

A different proof of the preceding theorem has been given by Pro-
fessor Stephen D. Comer.

We can use the number of summation signs and multiplication signs
that occur in a term as a measure of the complexity of the term; we call
this number the weight of the term. More precisely, we let w(x) = 0 if
is a variable, and if ¢ is the sum or the product of two or more terms
Sgy 81y -+ 8, then we let

w(t) =1+ max{w(s;)[t =0,1,...,k}.

Let us refer to an inclusion s <t as an (m, n)-inclusion if w(s) = m
and w(t) = n. It follows from Theorem 7 that if m <1 or n < 1, then
every (m,n)-inclusion is either a consequence of the lattice axioms or
else holds only in the one-element lattice. The simplest inclusions for which
this is not the case will therefore be (2, 2)-inclusions. The distributive
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law is of this type, but the modular law z(y+ x2) < ay+ 22z is a (3, 2)-
inclusion. It follows from the next theorem that the modular lattices
cannot be characterized by & (2, 2)-inclusion. A different proof of this
fact has been given by Professor Comer, who showed that any (2, 2)-in-
clusion that holds in every lattice of dimension two holds in every lattice.

THEOREM 8. Every (2, 2)-inclusion that implies the modular law also
itmplies the distributive law.

Proof. Let the given (2, 2)-inclusion be
1) s=[]1XY)< Y% =t.
jed ke K

If this implies the modular law, then it must fail in the pentagon
N ={0,u,v,w,1}, where u < w,uwv =wv =0 and u+v =w+v = 1.
It is therefore possible to assign a value 2'e¢N to each variable x that
occurs in (1) in such a way that s’ { ¢/, where s’ and ¢’ are the values of s
and ¢t under this assignment. If we identify two variables whenever they
receive the same value under this assignment, we obtain a new inclusion
which also fails in N under this assignment, and which is implied by (1).
It is therefore sufficient to show that the new inclusion implies the distri-
butive law. We may therefore assume without loss of generality that
there are only five variables z,, ,, «,, #,, z,, that occur in (1), and that
they are assigned the values 0, 1, u, v and w, respectively.

We may assume that (1) holds in some non-trivial lattice, and there-
fore holds in every distributive lattice. In this case, if ¢ is the homo-
morphism of N onto the distributive sublattice D = {0, u, v,1} that
maps w onto # and each member of D onto itself, then ¢(s') < ¢(¢'), and
this clearly can only happen if ' = w and ¢’ = . From this we can infer
that each of the sets Y; must contain either x,, or «, or z, and x,, and that
each Z, must contain z, or x, or x, and x,. Consequently, if we let

8 = 2,2 (v, +2,) and ¢ =uz,+2+2,2,,

then the inclusions s, < s and ¢ <?, hold in every lattice, and therefore
8, < t, is a consequence of (1). Finally, s, < ¢, implies

ww(mu+ .’D,,) K Byt Ty Ty

and this is well known to imply the distributive law.

A weaker form of this last theorem is stated by Takeuchi in [4], p. 6,
but there appears to be a gap in the proof. In fact, the argument is based
on a corollary on p. 62 in the earlier paper [3], and the proof of this makes
reference to another corollary on p. 60 of the same paper. However, the
earlier corollary concerns — u*-transformations, but the intended appli-
cation would seem to require — u-transformations.
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