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1. Summary. In this paper we show that the lattice of Borel structu-
res on a set is complemented iff the set is countable. This incidentally
answers that the minimal weak complements in the sense of D. Basu
need not exist. Though some special sub-algebras of the Borel algebra
of I, the unit interval, are shown to possess minimal weak complements
the author could not characterize all such subalgebras. Finally we con-
clude with characterizing all fixed maximal ideals in this lattice. It should
be noted that this paper is only a start of the study of the deep properties
of this lattice and consequently much is yet to be done.

2. Preliminaries. For any non-empty set X, Ly denotes the lattice
of all g-algebras on X. A o¢-algebra of subsets of X is also referred to as
a Borel structure on X. A ¢-algebra is said to be separable if it is countably
generated and contains all singleton sets. To avoid certain trivialities
we make the blanket assumption that X has more than two elements.
For o,0'eLx put 6 < ¢’ iff 0 = ¢'. Then Ly is a lattice and one can see
that o V o' is the smallest o-algebra generated by o and ¢’, whereas ¢ A ¢’
is the set-theoretic intersection of ¢ and ¢'. In fact, Ly is a complete lattice
possessing null element and unit element, viz. (3, X) and (Power set
of X) = Cy, respectively. These will be denoted by 0 and 1 respectively.
One can also observe that Ly is not distributive. We recall a few defini-
tions from lattice theory.

Let L be a lattice with 0 and 1. Let a, be L. Say that a’ is a comple-
ment of a relative to b if a \V ' = b and a A @’ = 0. Say that o' is weak
complement of a relative to b if a V @’ = b. If b = 1, complement relative
to b will be written as complement. Similar remark applies for weak
complements, abbreviated by w.c. Clearly a complement is a w.c. though
not conversely. Of course, neither complements nor w.c. need be unique.
A w.c. is said to be minimal if no element smaller than it is again a w.c.
A subset A of L is said to be an ideal if a,beA implies a \V be A and ac A,
b< aimply beA. An ideal is proper if it is not L itself. A proper ideal is
maximal if no ideal bigger than it is proper. An ideal A is principal or
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fized if there is an element aye L such that aeA iff a < a,. Maximal ideals
which are not fixed are said to be free.

3. Complementation in Ly.

THEOREM 1. Ly is complemented iff X is countable. In case X is coun-
table complement of no element other than 0 and 1 is unique.

Proof. Let us first assume that X is countable and oeL, . It is clear
that o has atoms (4,,n > 1), either finitely many or infinitely many;
and that a subset of X is in ¢ iff it is the union of some atoms. Let A4,
be any choice set for (4,; » > 1). Then the o-algebra generated by (4,,
singleton sets of A;) will work as a complement of . Observe that if ¢ is
neither 0 nor 1 then there is more than one such choice set.

We now turn to the proof of the other part of the theorem. First
note that if X <« Y and Ly is not complemented then neither is L, . For,
let o be an element of L, without a complement. Put ¢, as the structure
on Y generated by ¢ and all subsets of ¥ — X. If ¢, has a complement
in Ly, then it follows that its restriction to X will be a complement of o
in Ly. So it suffices to show that Ly is not complemented when the
cardinality of X is R,, the first uncountable cardinal.

We now assume that the cardinality of X is R,. Let ¢* be any sepa-
rable structure to X. Let o, be the countable-cocountable structure to X
contained in ¢*. We first note that o, has no complement relative to o*.
For, if it did have, say o,, then by standard techniques one can assume
that o is countably generated and then take any atom A of ¢,. Since 4 is
not in ¢4, A will be uncountable and the easily verifiable identity ¢* | A
= go|A (here | denotes restriction) gives us a contradiction.

We now claim that o, has no complement in Ly. For, if it did have,
say o,, then by straightforward calculation one observes that ¢, = o, N o*
will be a complement of ¢, relative to ¢*, which cannot exist by the conclu-
sion of the previous part. The only fact that one needs in this verification
ig that for any o in Ly we have ¢ V o, = [Z; Z 4 A is countable for some A4
in ¢]. This completes the proof of the theorem.

We now state a theoremx which enables us to conclude a statement
stronger than the above theorem.

THEOREM 2. Let 0 < o* be in L. If ¢’ is a minimal w.c. of o relative

to o*, then o' is also a complement relative to o*. The converse need not be true:
.Proof. For the proof of the first sentence we have only to show that

o A\ ¢’ = 0. On the contrary suppose that there is anon-empty proper subset,
say A, in ¢ N ¢'. Fix two points # and y in A and A° respectively and put

o' = |Bed’; B> [z,y] or B° > [x,y]].

Then A ¢¢'' = o'. We show that ¢ is a w.c. of ¢ relative to o* to con-
tradict the minimality of ¢’, which then proves our assertion. Since ¢ V ¢’
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= ¢*, to do this, it suffices to show that ¢ VV ¢’ o ¢’. Let Beo’'. If both «
and y are in B or B° then B is in ¢’’ by the definition. Assume that xeB,
ye¢B°. Observe that both B n A° and (B N A) U A° are in ¢’ and since
Ao it follows that (BN A) U Al NnAisin ¢V o' and B N A° is also
in ¢ V ¢'. Since the union of these two latter sets is B, it follows that
Beo \VV o'’ as desired.

To prove the last sentence of the theorem we give an example. Take X
as the unit square I x I, o* as its Borel algebra, ¢ and ¢’’ to be the stru-
ctures of vertical Borel cylinders and horizontal Borel cylinders respecti-
vely. Put ¢’ to be ¢'’ enlarged by adding a singleton set. It is clear that
both ¢’ and ¢’ are complements of ¢ relative to ¢* and ¢'’ < ¢’, 8o that o’
cannot be a minimal w.c.

From theorem 2 combined with theorem 1 one concludes that in L,
even minimal w.c. need not exist. This answers a question raised by
Basu [1]. Though our theorem theoretically answers the complementation
problem in Ly, still many interesting problems remain. To mention one,
what are those countably generated substructures of B on I that have
complements relative to B (P 741). Trivially any countably generated B,
contained in B that has only countably many atoms has a relative com-
plement. We do not have any satisfactory answer to the above question.
We exhibit in the theorem below a class of such structures. To do this
we feel it convenient to work with 2“ rather than I. We denote by B the
Borel structure on 2“ and since we do not bring in I now there is no fear
of confusion.

THEOREM 3. Let g be a continuous function on 2° into a Polish space
such that for all v in V (= the range of g), g~ (v) 48 homeomorphic to 2°.
Let B, c B be the subalgebra induced by g. Then B, has a minimal w.c.
relative to B.

Proof. By a trivial modification of a lemma of Purves [2] there
exist homeomorphisms ¥, on ¢~'(v) to 2 such that the map s: 2* — 2
defined by s(z) = P,(x) if z is in g~ (v) is a Borel map. Odnseque’ntly, the
map f: 2° > V x2“ given by f(z) = (9(»), 8(«)) is a Borel isomorphism
which transports g to the projection to the V-axis in V x 2°. In other words,
B, is transported to the o-algebra of vertical cylinders in V x 2“ for which.
the o-algebra of horizontal cylinders will work as a minimal weak w.c.

4. Ideals in L. Let us say that a Borel structure o on X is an ultra-
structure if ¢ # Cx and ¢’ > ¢ implies ¢’ = Cx. With each o in Ly asso-
ciate the ideal 4, generated by it. Observe that A, is maximal iff ¢ is
an ultrastructure. Consequently, characterization of fixed maximal ideals
of Ly reduces to finding all ultrastructures on X. This is done in the follow-
ing theorem. Recall that a o-ideal on X means a o-ideal in the lattice
of all subsets of X. A ¢-ideal is ultra if it is proper and maximal.
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THEOREM 4. Let I and J be distinct maximal o-ideals on X. Put
o(I,J) =[A; A or A° is in In J].

Then o (I,dJ) is an ultrastructure on X. Conversely, every ultrastructure
on X is of this form.

Proof. Clearly, o(I,J) is a o-algebra on X and since I and J are
distinet, this is different from Cy. Let o' be any structure properly con-
taining o (I, J). Let A belong to ¢’ but not to o(I, J). For specificness,
let A<l and A ¢J, so that A°eJ. To show that ¢’ = Cy, it suffices to show
that I c ¢'. If Bel, then A° N Bis in both I and J and so is in ¢’. Moreover,
ANB=[ANB)UA°l nA is also in ¢'. These two statements show
that Beo'.

For the converse, let o, be an ultrastructure on X. Put H = (E < X;
all subsets of K are in o,). Then H is a o-ideal of subsets of X which is
not maximal since o, #Cy. Consequently we can find A < X such that
I = Ideal generated by H and A4, and J = Ideal generated by H and A° are
both proper. By the maximality of ¢, it follows that o, = o(H, H), which is
contained in both ¢ (I, I) and o(J,J). This contradicts the maximality of ¢,
unless both I and J are maximal. Clearly, these two are distinct and, being
finite extensions of H, they are also ¢-ideals. Finally, note that o(I,J) is an
ultrastructure from the previous part and o, is an ultrastructure contained
in it. This proves that o, = o (I, J). This completes the proof of the theorem.

The author had originally obtained a theorem weaker than Theorem 4
by similar arguments, and the present formulation of Theorem 4 is due
to Prof. C. Ryll-Nardzewski.

Observe that if X is such that countably additive 0-1 measure cannot
be defined on its power set, then every maximal o-ideal is fixed and,
consequently, every ultrastructure is of the form [B; B or B° contains
both z and y] for some two distinet points # and y. If X is finite, then L,
is finite and hence has no free maximal ideals, while if X is infinite there
always exist free maximals ideals. We do not yet have any way of cha-
racterizing them.

The author acknowledges with pleasure the many useful comments
of Prof. C. Ryll-Nardzewski which have greatly improved the presenta-
tion. Thanks are also to Prof. Ashok Maitra for his encouragement.
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