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Consider the differential-algebraic equation (DAE)

(1)

S @), x(),)=0, tela,b],

with boundary condition

(2)

g(x(a), x(b)) =0,

where f and g fulfil the following assumptions (A):

f: B;cR"xR"x[a,b] - R", f; and J; exist and are smooth;
ker(f; (. x, £)) = N(OV(y, x, )e B, rank(f,(y, x, t)) =r, dimN (¢)
=n-r;

Q (t) denotes a projection onto N (¢), Q is smooth and P (1):=1—Q(t);
the matrix G(y,x, t):= f,{y, x, )+Si(y, x, ) Q(t) is regular
V(y, x,t)eBy, ie. fis transferable,

g: B,cR"XR"->McR", g, and g,, exist and im(g%,, gx,) = M;
M@®N(a)=R"

Under these assumptions we know that if x* is an isolated solution of (1), (2),
then (1), (2) is a well-posed equation (see [1]). Let x* be an isolated solution of

(1, (2)

and

A(e):= £ (x* (1), x*(0), 1), B(t):= fi(x* (1), x* (1), 1).

Consider the matrix-DAE

(3)

ADX'(t, )+BB) X, 5)=0

with the initial condition

(4)

P(s)(X(s,5)—1)=0;

[233]
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then X(t, s) is called the fundamental matrix of (1) and
X(t, 5):= P, () Y(t, 5)P(s),
Y'(t,s)= (P () P, () —P() G™ (D B() Y (¢, 8),
Y{s,5)=1,

P, denotes the canonical projector

P:=I—QG 'B
(see [4])
In addition to (1), (2) we consider the initial value problem
(5) (X' (@), x(), 1) =0,
(6) P(s)(x(s)—2) = 0,

and we denote the solution of (5), (6) by x(¢; s, z). The existence of the solution
of (5), (6) is saved by our assumptions in a neighbourhood of x* (see [1]). The
determination of consistent initial values (y(s), x(s)) is possible by solving the
nonlinear system

(7) (x(5)=2)+0@E)yE) =0, [f(¥(s), x(s),s)=0.
This shows

Lemma 1. 4, B and D are (n x n)-matrices. Q is a projection and projects
onto ker(A). The matrix G.= A+ BQ is regular and with P:=1—Q,if D =1 or
D = P, then (4 B) is regular and

¥

(Q D)_(O 1)(0(} 01) P —-0\/-1 -D
AB) \-I1B/)\I0)\II/)]\-Q P 0o I )
(Q D)“ _ (I—D—(P*DQ)G”B (P—-DQ)G !

A B I-0G™'B 0G™!? )

(0 PN D) )0 )

Proof. Consider the homogeneous system

(8a) (Q D\(y _0
(8b) A B)\x/

(8a) —» Q(y+Dx)+PDx=0 — Px=0, Q(y+Dx) = 0;

(8b) — Ay+Bx = (A+BQ)(Py+Qy)+BPx = 0.
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With Px =0 and the nonsingularity of G follows
Py+Qy=0 — Py=0, Qx=0 - x=0 - QOy=0 — y=0.

The product structure and the inverse of the matrix is shown by matrix
multiplication. m

Remark. The attribute of D is fulfilled for example if
a) D:=P,
b) D:=1.

1. Shooting method

The general idea of parallel shooting is well known. We subdivide the interval
[a, b] in m subintervals

A=ty <t <t,<..<t,=b
and we try to calculate the values (initial values of integration)

zti=x*@), i=0,...,m—1.
We get the following system of equations

P([,)(X(tl, 1,--1, z,-_l)—zi)=0, i=1,...,m—1,
%)
9(20s X (£ tm-15 Zm=1)) = 0.

(9) forms a singular system for determination of zg, ..., z,,-1.
The Jacobian of (9) has a cyclic-(n x n)-block structure like in the case of
ODE.

(10)
Pt )Xy, tp) —P(t,)
P(t) X (13, 1y) —P(t,)
P(tm—l)X(tm—la [m—Z) _P(tm—l)
g;q g;bX(tm’ tm—l)

Ji=

Now it is possible to enlarge the system (9) so that the system becomes
nonsingular

P(t)(x(t; ticq, zi-y)—2)+ Q) ¥, = 0,
S xi t) =0,

§(2, X (L3 tm—15 Zn- 1))+ Qo) yo =0,
I (Yo, 2q: tg) = 0.

THEOREM 1. For transferable equations (1) (11) forms a regular system for
determining (y,, z,), i=0,...,m—1L

Proof. The Jacobian J, of (11) has a cyclic (2nx 2n)-block structure.

i=1,...,m—1,

(11)
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(12)

[0 Pt)X(, 1) O(ty) —P(t) )

0 0 I
J. = 0 P(tm— I)X(tm—l’ tm—Z) Q(rm— l) —P(Em— 1)
T 0 O f.vlm—l j:';m—l
Q(to) ‘q;-u 0 y;uX(tm, [m-‘ l)

g j;"u leu 0 0 -

For every block (Qf. If)) the assumptions of Lemma 1 are fulfilled with D = —P.

This means that J, is a nonsingular matrix. w
Lemma 1 gives the possibility to reduce (11) without loss of regularity.
(x(t; ti1, 2imy)—2)+ Q@) ¥, =0, i=1,....,m—1,
Sy xi t) =0,
g(zgs X (tws =15 Zm-1)) + Q@ (85) Yo = 0,
T (Yo 29, o) = 0.
The Jacobian J; of (13) has the structure

(13)

(14)
C0 Xty 1o) Ot;) —I )
0 0 A
J — OX(tm—latm—Z)Q(lm—J) _I
3 0 0 Fomes Jim_
Q(t()) g;:,, 0 g;-bX(tm, tm—l)
L f;?,() fZ,u O 0 J
is nonsingular because of Theorem 1 and Lemma 1 with D = —1.

With respect to (7) the idea of the systems (11) and (13) means to save that
the determination of consistent intial values in every subinterval [t,_,, t]
works with equations with nonsingular Jacobian. Will it be sufficient to add
such equations only in one shooting point?

x(tpti—,zi-)—2,=0, i=1,...,m—1,i#iy,
X(tigs Lig—15 Zig-1)— 2, + Q) ¥i, = 0,
S Wi Xigp i) =0, iy #0,
9(2gs X (tps tm-1+ Zm-1)) =0,
Q(Zo, X by bn—11 Zin— 1))+Q(t0) yo =0,
I (Vo 20, 10} = 0,

(15)



(16)

-
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The Jacobian of (15) has the structure

l

7,

rX(tla [0) —1

XA(t,, ty) —1
X (Ligs ti—1) Q(2) I
S St
X (tig+15 L) —~1I

X (tm-— 1 tm— 2)

s,

237

-1
g:n,X(tm: tm— I)J

THEOREM 2. The assumptions (A) are fulfilled. Then (15) represents a sys-

tem with a nonsingular Jacobian.
Proof. Consider the equation
(17 Ju=0
with
U= 1(Zgs Zysres Zig—15 Vigs Zigs =+ s Zm—1) -

From (17) we have

(a) X(ti, ti—])zf—l = Z; i=0,...,i0—1,
Q(tio) yio—zio = —X(tfo’ tfu‘l)zlo-l;
(b) , !
f)’io Yio+f;iozi0 = 0’
(C) X(ti, ti-l)z,-_l = Z; i=i0,...,m—1,
(d) gitazo-l-g;cbX(tm’ tm—l)zm—l :0'
(a), (¢} and the qualities of X give
(a") zlo'-l = X(tl'o— 1> tO) ZO:
(C’) Im-1<= X (tm— 1s tio) zio’
(a), (b') and the representation of the inverse by Lemma | with D = —1
gives
(b) Vo| _| G f2y  Gid' — X (tiy» to) 2o
zl'o —Ps (tio) Q ([in) Gl; ! 0 ‘

(b), (c') and (d) give
(d) (Grat s X (s t0)) 2o = 0.
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For i, =0 we get the equations
Q(lo) y0+(g;¢a +g:chX(tm’ lO))ZO = 0’
Syo Yo+Sz020 = 0.

From (d') (i, # 0) we are able only to conclude that z, € N (a). From (d,) (i, = 0)
follows because of the qualities of g, the transferability of f, and Lemma 1 that

(Y0, 20)=0. =

Now we once more consider system (9) with the Jacobian J, (10) and point
out that we are only interested in the projections P (t;) z; of the initial values z,
(i=0,..., m—1). This allows us to consider equation (9) in the sense that we
don’t compute the values z, but only the projections P(¢)z,.

LEmMMA 2. U, B are k x k matrices and the matrix pencil (U, B) is regular
with index 1. Let Q be a projector onto ker (W) and P:=1—Q, then exists
a nonsingular matrix ® such that A = OB and U™ := PG~ is a generalised
inverse of U.

Proof. 1f we select := A+ B we know from the assumptions that ® is
nonsingular and U = GP.

If A~ is a generalised inverse we have to show

(@) A~ AA™ = A",

(b) UA~ AU = A,

{c) A~ A represents a projector.
With AP = A and G 'A =P we get

(@ A AA™ = PE'APG ' =PH ' = A",

(b) AA~ A =APG ™' A = A,

© U A=PE'A=P. u

LEMMA 3. Consider a linear system of equations

(do)

(18) Ax = b,
beim () and the assumptions of Lemma 2 are fulfilled. Then
Px =G Lh.

Proof. A solution x of (18) exists because beim (). We use the represen-
tation of U = GP and multiply (18) with G~ m
We use Lemma 2 and 3 with
q3:= diag(P(LD): cees P(tm—l)),
W=J,,
0 -1
0 —1I
B = T ,
0 —1I
—1I 0
Q=I1-P.
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This leads to the following nonsingular “Jacobian” for determining the
shooting values by (9) by Newton’s method

Js =N+ BY

P(t) X (t,,tp) -1
_ P(t;) X (ty, ty) ~1
P(tm—'l)X(tm—I: tm—2)

9x.— @ ()

—1
g;:bX (tm’ tm— 1)

2. Mustrative example
Consider the DAE

D] o] T oestE 7
with the boundary condition

x, (b) = 10,

For the integration we use a modified ADAM’s method (see [3]} and for
solving the nonlinear algebraic equations the procedure NLZYK: (see [2]).

We test the methods (11), (13) and (9) with “Jacobian” Js.

For three shooting points (m =3) and an accuracy of integrating
eps = 1D —4 and the initial values
x (1.0) = (6.000000000, 7.500000000)7,
x(1.3) = (8.1666666667, 9.6666666667)7,
x(1.6) = (10.666666667, 12.166666667)7

we get the following results

(1 (13) (9) with Jg exact solution
x(1.0) 3.9946905 3.9946943 3.9947936 4.0
4.9946905 49946943 4.9947936 50
x(1.3) 5.4401434 5.4401437 5.4401536 54
6.4401434 6.4401437 6.4406127 6.4
x(1.8) 7.1086354 7.1086410 7.1089919 7.1
8.1086354 8.1086410 8.1091530 8.1
x(2.0) 9.0000209 9.0000272 9.0003480 9.0
10.00002 10.000027 10.000348 10.0
estimated length of | number of defect
f-calls g-calls condition working Newton of
of J; area iterations | nl-equation
(11} 7315 7 13.12 463 5 4.298-05
(13) 7289 7 14.83 459 5 4241-05
(9)+J, 7260 7 11.47 246 5 438304
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This reveals that the quality of the results is the same, but with method (9)+J_
we need about half of the storage of the other algorithms. The Jacobian J itself
only has a quarter of the elements of the matrices J, or J;.

We need the same storage as in the ODE case.

References

[1] E.Griepentrog, R. Marz, Differential-Algebraic Equations and Their Numerical Treatment,
Teubner Texte Band 88, Leipzig 1986.

[2] Hanke, R. Lamour, Winkler, The program system “RW A" for ‘the solution of two-point
houndary-value problems, Humboldt University of Berlin, Section of Mathematics, Seminar-
bericht Nr. 67, Berlin |985.

(3] R. Lamour, Shooting methods for transferable DAE’s — Integration methods, in preparation.

(4] Lentini, R. Mérz, The condition of boundary value problems in transferable differen-
tial-algebraic equations, Humboldt University of Berlin, Section of Mathematics, Preprint 136,
Berlin 1987.

Presented Lo the Semester
Numerical Analysis and Mathematical Modelling
February 25— May 29, 1987



