SHOOTING METHODS FOR TRANSFERABLE DAE'S SOLUTION OF SHOOTING EQUATION

R. LAMOUR

Section of Mathematics, Humboldt University of Berlin, Berlin, German Democratic Republic

Consider the differential-algebraic equation (DAE)

(1)
$$f(x'(t), x(t), t) = 0, \quad t \in [a, b],$$

with boundary condition

$$(2) g(x(a), x(b)) = 0,$$

where f and g fulfil the following assumptions (A):

- $f: B_f \subset \mathbb{R}^n \times \mathbb{R}^n \times [a, b] \to \mathbb{R}^n$, f_y' and f_x' exist and are smooth; $\ker(f_y'(y, x, t)) = N(t) \forall (y, x, t) \in B_f$, $\operatorname{rank}(f_y'(y, x, t)) = r$, $\dim N(t)$
- Q(t) denotes a projection onto N(t), Q is smooth and P(t) := I Q(t);
- the matrix $G(y, x, t) := f_y'(y, x, t) + f_x'(y, x, t) Q(t)$ is regular $\forall (y, x, t) \in B_f, \text{ i.e. } f \text{ is transferable;} \\ -g: B_g \subset \mathbf{R}^n \times \mathbf{R}^n \to M \subset \mathbf{R}^n, \ g'_{x_a} \text{ and } g'_{x_b} \text{ exist and } \operatorname{im}(g'_{x_a}, g'_{x_b}) = M;$
- $-M \oplus N(a) = \mathbb{R}^n$.

Under these assumptions we know that if x^* is an isolated solution of (1), (2), then (1), (2) is a well-posed equation (see [1]). Let x^* be an isolated solution of (1), (2) and

$$A(t) := f'_{y}(x^{*'}(t), x^{*}(t), t), \quad B(t) := f'_{x}(x^{*'}(t), x^{*}(t), t).$$

Consider the matrix-DAE

(3)
$$A(t)X'(t, s) + B(t)X(t, s) = 0$$

with the initial condition

(4)
$$P(s)(X(s, s)-I) = 0;$$

then X(t, s) is called the fundamental matrix of (1) and

$$X(t, s) := P_{s}(t) Y(t, s) P(s),$$

$$Y'(t, s) = (P'(t) P_{s}(t) - P(t) G^{-1}(t) B(t)) Y(t, s),$$

$$Y(s, s) = I,$$

 P_s denotes the canonical projector

$$P_s := I - QG^{-1}B$$

(see [4]).

In addition to (1), (2) we consider the initial value problem

(5)
$$f(x'(t), x(t), t) = 0,$$

(6)
$$P(s)(x(s)-z)=0$$
,

and we denote the solution of (5), (6) by x(t; s, z). The existence of the solution of (5), (6) is saved by our assumptions in a neighbourhood of x^* (see [1]). The determination of consistent initial values (y(s), x(s)) is possible by solving the nonlinear system

(7)
$$(x(s)-z)+Q(s)y(s)=0, \quad f(y(s),x(s),s)=0.$$

This shows

LEMMA 1. A, B and D are $(n \times n)$ -matrices. Q is a projection and projects onto $\ker(A)$. The matrix G := A + BQ is regular and with P := I - Q, if D = I or D = P, then $\begin{pmatrix} Q & D \\ A & B \end{pmatrix}$ is regular and

$$\begin{pmatrix} Q & D \\ A & B \end{pmatrix} = \begin{pmatrix} 0 & I \\ -I & B \end{pmatrix} \begin{pmatrix} 0 & G \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ I & I \end{pmatrix} \begin{pmatrix} P & -Q \\ -Q & P \end{pmatrix} \begin{pmatrix} -I & -D \\ 0 & I \end{pmatrix},$$

$$\begin{pmatrix} Q & D \\ A & B \end{pmatrix}^{-1} = \begin{pmatrix} I - D - (P - DQ) G^{-1} B & (P - DQ) G^{-1} \\ I - QG^{-1} B & QG^{-1} \end{pmatrix}$$

$$= \begin{pmatrix} -I & -D \\ 0 & I \end{pmatrix} \begin{pmatrix} P & -Q \\ -Q & P \end{pmatrix} \begin{pmatrix} -I & I \\ I & 0 \end{pmatrix} \begin{pmatrix} 0 & I \\ G^{-1} & 0 \end{pmatrix} \begin{pmatrix} B & -I \\ I & 0 \end{pmatrix}.$$

Proof. Consider the homogeneous system

(8a)
$$\begin{pmatrix} Q & D \\ A & B \end{pmatrix} \begin{pmatrix} y \\ x \end{pmatrix} = 0.$$
(8a) $\rightarrow Q(y+Dx) + PDx = 0 \rightarrow Px = 0, \quad Q(y+Dx) = 0;$
(8b) $\rightarrow Ay + Bx = (A+BQ)(Py+Qy) + BPx = 0.$

With Px = 0 and the nonsingularity of G follows

$$Py + Qy = 0 \rightarrow Py = 0$$
, $Qx = 0 \rightarrow x = 0 \rightarrow Qy = 0 \rightarrow y = 0$.

The product structure and the inverse of the matrix is shown by matrix multiplication.

Remark. The attribute of D is fulfilled for example if

- a) D := P,
- b) D := I.

1. Shooting method

The general idea of parallel shooting is well known. We subdivide the interval [a, b] in m subintervals

$$a = t_0 < t_1 < t_2 < \dots < t_m = b$$

and we try to calculate the values (initial values of integration)

$$z_i^* := x^*(t_i), \quad i = 0, ..., m-1.$$

We get the following system of equations

(9)
$$P(t_i)(x(t_i; t_{i-1}, z_{i-1}) - z_i) = 0, \quad i = 1, ..., m-1, g(z_0, x(t_m; t_{m-1}, z_{m-1})) = 0.$$

(9) forms a singular system for determination of $z_0, ..., z_{m-1}$.

The Jacobian of (9) has a cyclic- $(n \times n)$ -block structure like in the case of ODE.

(10)

$$J_{1} = \begin{bmatrix} P(t_{1})X(t_{1}, t_{0}) & -P(t_{1}) & & & & \\ & P(t_{2})X(t_{2}, t_{1}) & -P(t_{2}) & & & \\ & & P(t_{m-1})X(t_{m-1}, t_{m-2}) & -P(t_{m-1}) & \\ & & & g'_{x_{a}} & & & & g'_{x_{b}}X(t_{m}, t_{m-1}) \end{bmatrix}.$$

Now it is possible to enlarge the system (9) so that the system becomes nonsingular

(11)
$$P(t_{i})(x(t_{i}; t_{i-1}, z_{i-1})-z_{i})+Q(t_{i}) y_{i} = 0, f(y_{i}, x_{i}, t_{i}) = 0, g(z, x(t_{m}; t_{m-1}, z_{m-1}))+Q(t_{0}) y_{0} = 0, f(y_{0}, z_{0}, t_{0}) = 0.$$

THEOREM 1. For transferable equations (1) (11) forms a regular system for determining (y_i, z_i) , i = 0, ..., m-1.

Proof. The Jacobian J_2 of (11) has a cyclic $(2n \times 2n)$ -block structure.

(12)

$$J_2 = \begin{bmatrix} 0 & P(t_1)X(t, t_0) & Q(t_1) & -P(t_1) \\ 0 & 0 & f'_{y_1} & f'_{z_1} \\ & & 0 & P(t_{m-1})X(t_{m-1}, t_{m-2}) & Q(t_{m-1}) & -P(t_{m-1}) \\ & & 0 & 0 & f'_{y_{m-1}} & f'_{z_{m-1}} \\ Q(t_0) & g'_{x_0} & & 0 & g'_{x_0}X(t_m, t_{m-1}) \\ f'_{y_0} & f'_{z_0} & & 0 & 0 \end{bmatrix}.$$

For every block $\binom{Q}{f_y'} \binom{D}{f_z'}$ the assumptions of Lemma 1 are fulfilled with D = -P. This means that J_2 is a nonsingular matrix.

Lemma 1 gives the possibility to reduce (11) without loss of regularity.

(13)
$$(x(t_i; t_{i-1}, z_{i-1}) - z_i) + Q(t_i) y_i = 0, \quad i = 1, ..., m-1,$$

$$f(y_i, x_i, t_i) = 0,$$

$$g(z_0, x(t_m; t_{m-1}, z_{m-1})) + Q(t_0) y_0 = 0,$$

$$f(y_0, z_0, t_0) = 0.$$

The Jacobian J_3 of (13) has the structure

(14)

$$J_{3} = \begin{pmatrix} 0 & X \cdot (t_{1}, t_{0}) \ Q(t_{1}) & -I \\ 0 & 0 & f'_{y_{1}} & f'_{z_{1}} \\ & & 0 & X(t_{m-1}, t_{m-2}) \ Q(t_{m-1}) & -I \\ & & 0 & 0 & f'_{y_{m-1}} & f'_{z_{m-1}} \\ Q(t_{0}) & g'_{x_{0}} & & 0 & g'_{x_{0}} X(t_{m}, t_{m-1}) \\ f'_{y_{0}} & f'_{z_{0}} & & 0 & 0 \end{pmatrix}$$

is nonsingular because of Theorem 1 and Lemma 1 with D = -I.

With respect to (7) the idea of the systems (11) and (13) means to save that the determination of consistent intial values in every subinterval $[t_{i-1}, t_i]$ works with equations with nonsingular Jacobian. Will it be sufficient to add such equations only in one shooting point?

$$x(t_{i}; t_{i-1}, z_{i-1}) - z_{i} = 0, i = 1, ..., m-1, i \neq i_{0},$$

$$x(t_{i_{0}}; t_{i_{0}-1}, z_{i_{0}-1}) - z_{i_{0}} + Q(t_{i_{0}}) y_{i_{0}} = 0,$$

$$f(y_{i_{0}}, x_{i_{0}}, t_{i_{0}}) = 0, i_{0} \neq 0,$$

$$g(z_{0}, x(t_{m}; t_{m-1}, z_{m-1})) = 0,$$

$$g(z_{0}, x(t_{m}; t_{m-1}, z_{m-1})) + Q(t_{0}) y_{0} = 0,$$

$$f(y_{0}, z_{0}, t_{0}) = 0,$$

$$i_{0} = 0.$$

The Jacobian of (15) has the structure

(16)
$$J_4 =$$

$$\begin{bmatrix} X(t_1, t_0) & -I & & & & & & \\ & X(t_2, t_0) & -I & & & & & & \\ & & X(t_{i_0}, t_{i_0-1}) \ Q(t_i) & I & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

THEOREM 2. The assumptions (A) are fulfilled. Then (15) represents a system with a nonsingular Jacobian.

Proof. Consider the equation

$$(17) J_4 u = 0$$

with

$$u = (z_0, z_1, \ldots, z_{i_0-1}, y_{i_0}, z_{i_0}, \ldots, z_{m-1})^T.$$

From (17) we have

(a)
$$X(t_i, t_{i-1})z_{i-1} = z_i, \quad i = 0, ..., i_0 - 1,$$

(b)
$$\begin{aligned} Q(t_{i_0}) \ y_{i_0} - z_{i_0} &= -X(t_{i_0}, \ t_{i_0-1}) z_{i_0-1}, \\ f'_{y_{i_0}} \ y_{i_0} + f'_{z_{i_0}} z_{i_0} &= 0, \end{aligned}$$

(c)
$$X(t_i, t_{i-1})z_{i-1} = z_i, \quad i = i_0, ..., m-1,$$

(d)
$$g'_{x_a} z_0 + g'_{x_b} X(t_m, t_{m-1}) z_{m-1} = 0.$$

(a), (c) and the qualities of X give

$$(a') z_{i_0-1} = X(t_{i_0-1}, t_0) z_{0},$$

(c')
$$z_{m-1} = X(t_{m-1}, t_{i_0}) z_{i_0}.$$

(a'), (b') and the representation of the inverse by Lemma 1 with D=-I gives

(b')
$$\begin{bmatrix} y_{i_0} \\ z_{i_0} \end{bmatrix} = \begin{bmatrix} G_{i_0}^{-1} f'_{z_{i_0}} & G_{i_0}^{-1} \\ -P_s(t_{i_0}) & Q(t_{i_0}) G_{i_0}^{-1} \end{bmatrix} \begin{bmatrix} -X(t_{i_0}, t_0) z_0 \\ 0 \end{bmatrix}.$$

(b'), (c') and (d) give

(d')
$$(g'_{x_0} + g'_{x_h} X(t_m, t_0)) z_0 = 0.$$

For $i_0 = 0$ we get the equations

$$Q(t_0) y_0 + (g'_{x_a} + g'_{x_b} X(t_m, t_0)) z_0 = 0,$$

$$f'_{y_0} y_0 + f'_{z_0} z_0 = 0.$$

From (d') $(i_0 \neq 0)$ we are able only to conclude that $z_0 \in N(a)$. From (d₀) $(i_0 = 0)$ follows because of the qualities of g, the transferability of f, and Lemma 1 that $(y_0, z_0) \equiv 0$.

Now we once more consider system (9) with the Jacobian J_1 (10) and point out that we are only interested in the projections $P(t_i)z_i$ of the initial values z_i (i = 0, ..., m-1). This allows us to consider equation (9) in the sense that we don't compute the values z_i but only the projections $P(t_i)z_i$.

LEMMA 2. \mathfrak{A} , \mathfrak{B} are $k \times k$ matrices and the matrix pencil $(\mathfrak{A}, \mathfrak{B})$ is regular with index 1. Let \mathfrak{Q} be a projector onto $\ker(\mathfrak{A})$ and $\mathfrak{P} := I - \mathfrak{Q}$, then exists a nonsingular matrix \mathfrak{G} such that $\mathfrak{A} = \mathfrak{G}\mathfrak{B}$ and $\mathfrak{A}^- := \mathfrak{P}\mathfrak{G}^{-1}$ is a generalised inverse of \mathfrak{A} .

Proof. If we select $\mathfrak{G} := \mathfrak{A} + \mathfrak{BQ}$ we know from the assumptions that \mathfrak{G} is nonsingular and $\mathfrak{A} = \mathfrak{GP}$.

If \mathfrak{A}^- is a generalised inverse we have to show

- (a) $\mathfrak{A}^- \mathfrak{A} \mathfrak{A}^- = \mathfrak{A}^-$,
- (b) $\mathfrak{U}\mathfrak{U}^-\mathfrak{U}=\mathfrak{U}$,
- (c) $\mathfrak{A}^-\mathfrak{A}$ represents a projector.

With $\mathfrak{UP} = \mathfrak{U}$ and $\mathfrak{G}^{-1}\mathfrak{U} = \mathfrak{P}$ we get

- (a) $\mathfrak{A}^- \mathfrak{A} \mathfrak{A}^- = \mathfrak{P} \mathfrak{G}^{-1} \mathfrak{A} \mathfrak{P} \mathfrak{G}^{-1} = \mathfrak{P} \mathfrak{G}^{-1} = \mathfrak{A}^-$
- (b) $\mathfrak{U}\mathfrak{U}^-\mathfrak{U} = \mathfrak{U}\mathfrak{P}\mathfrak{G}^{-1}\mathfrak{U} = \mathfrak{U}$,
- (c) $\mathfrak{A}^-\mathfrak{A} = \mathfrak{P}\mathfrak{G}^{-1}\mathfrak{A} = \mathfrak{P}$.

LEMMA 3. Consider a linear system of equations

$$\mathfrak{A}x = b,$$

 $b \in \operatorname{im}(\mathfrak{A})$ and the assumptions of Lemma 2 are fulfilled. Then

$$\mathfrak{P}x = \mathfrak{G}^{-1}b$$
.

Proof. A solution x of (18) exists because $b \in \operatorname{im}(\mathfrak{A})$. We use the representation of $\mathfrak{A} = \mathfrak{GP}$ and multiply (18) with \mathfrak{G}^{-1} .

We use Lemma 2 and 3 with

$$\mathfrak{P} := \operatorname{diag}(P(t_0), \ldots, P(t_{m-1})),$$

$$\mathfrak{A} := J_1,$$

$$\mathfrak{B} = \begin{bmatrix} 0 & -I & & \\ & 0 & -I & \\ & & & \ddots & \\ & & 0 & -I \\ -I & & & 0 \end{bmatrix},$$

$$\mathfrak{Q} = I - \mathfrak{P}.$$

This leads to the following nonsingular "Jacobian" for determining the shooting values by (9) by Newton's method

$$\begin{split} J_5 &= \mathfrak{AI} + \mathfrak{BQ} \\ &= \begin{bmatrix} P(t_1) \, X(t_1, \, t_0) & -I & & \\ & P(t_2) \, X(t_2, \, t_1) & -I & \\ & & P(t_{m-1}) \, X(t_{m-1}, \, t_{m-2}) & -I \\ & & g'_{x_b} \, X(t_m, \, t_{m-1}) \end{bmatrix}. \end{split}$$

2. Illustrative example

Consider the DAE

$$\begin{bmatrix} 1 & t \\ 1 & t \end{bmatrix} \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} - \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} (t+1)^2 \\ (t+1)^2 - 1 \end{bmatrix}, \quad t \in [1, 2],$$

with the boundary condition

$$x_2(b) = 10.$$

For the integration we use a modified ADAM's method (see [3]) and for solving the nonlinear algebraic equations the procedure NLZYK (see [2]).

We test the methods (11), (13) and (9) with "Jacobian" J_5 .

For three shooting points (m = 3) and an accuracy of integrating eps = 1D-4 and the initial values

$$x(1.0) = (6.000000000, 7.500000000)^T,$$

 $x(1.\overline{3}) = (8.1666666667, 9.6666666667)^T,$
 $x(1.\overline{6}) = (10.666666667, 12.166666667)^T$

we get the following results

	(11)	(13)	(9) with J_s	exact solution
x(1.0)	3.9946905	3.9946943	3.9947936	4.0
	4.9946905	4.9946943	4.9947936	5.0
$x(1.\overline{3})$	5.4401434	5.4401437	5.4401536	5.4
	6.4401434	6.4401437	6.4406127	6.4
$x(1.\overline{6})$	7.1086354	7.1086410	7.1089919	7.1
	8.1086354	8.1086410	8.1091530	8.1
x(2.0)	9.0000209	9.0000272	9.0003480	9.0
	10.000021	10.000027	10.000348	10.0

	f-calls	g-calls	cstimated condition of J_i	length of working area	number of Newton iterations	defect of nl-equation
(11)	7315	7	13.12	463	5	4.298-05
(13)	7289	7	14.83	459	5	4.241-05
$(9) + J_s$	7260	7	11.47	246	5	4.38304

This reveals that the quality of the results is the same, but with method $(9) + J_s$, we need about half of the storage of the other algorithms. The Jacobian J_5 itself only has a quarter of the elements of the matrices J_2 or J_3 .

We need the same storage as in the ODE case.

References

- [1] E. Griepentrog, R. März, Differential-Algebraic Equations and Their Numerical Treatment, Teubner Texte Band 88, Leipzig 1986.
- [2] Hanke, R. Lamour, Winkler, The program system "RWA" for the solution of two-point houndary-value problems, Humboldt University of Berlin, Section of Mathematics, Seminar-bericht Nr. 67, Berlin 1985.
- [3] R. Lamour, Shooting methods for transferable DAE's Integration methods, in preparation.
- [4] Lentini, R. März, The condition of boundary value problems in transferable differential-algebraic equations, Humboldt University of Berlin, Section of Mathematics, Preprint 136, Berlin 1987.

Presented to the Semester

Numerical Analysis and Mathematical Modelling

February 25—May 29, 1987