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Optimality conditions for a Bolza problem
governed by a hyperbolic system
of Darboux—Goursat type

by S. WaLczak (L6d2)

Abstruct. In the paper we consider a linear optimization problem of Bolza type described by
a system of partial differential equations in the space of functions absolutely continuous on the
planc. We prove a necessary condition for optimality in the form of a maximum principle. The
form of the corresponding theorem is analogous to the Pontryagin maximum principle for
ordinary dilferential systems.

1. Introduction. Let us consider a dynamical system of Darboux—Goursat
type
62

i35 ——(t, x) = Ay(t, x)z(t, x)+ A4,(t, x) (t X)

(a)

0z
+A,(t, x)— ™

z(t, 0) = (1), 2(0, x} = @, (x)
with a cost functional of the form

(t, x)+ B(t, x)u(t, x),

11 0z

(b) F(z, 4 =H(co(r, X)2(t, %)+ ¢,(t, 9 5 ¢, )
00
+c,(t, x) (t x)+d(t, x)u(t, x))dtdx

+ (el(t (¢, 1+e2()gi(t, 1))dt

1
f
0
+}(e,(x)z(1 X) + e, (X) — ;(l,x))dx,

The system (a) will be considered in the space of functions absolutely
continuous on the plane. The definition of this space was given in [8], [10], and
its basic properties are proved in [9]. Among other things, it is shown there
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that, for any control ueL_, there exists a uniquely determined trajectory
z which is an absolutely continuous function and depends continuously on the
initial conditions ¢, and ¢,. Systems of Darboux-Goursat type were the
object of investigations of many mathematicians. Extensive references and
a number of essential results concerning the existence of smooth solutions can
be found in [1]. In [6], a sufficient condition for the existence of solutions in
Sobolev spaces is proved.

In the present paper, the optimization system (a)-(b) is considered in the
space of absolutely continuous functions. This permits the Dubovitskii-
Milyutin method to be used to obtain necessary conditions for optimality,
quite analogous to the Pontryagin maximum principle for ordinary systems.
Bolza’s problem in other function spaces was studied in [2], [7]. A comparison
of our results with those obtained previously is given at the end of the paper
(Remark 3).

2. Preliminaries. By P? we shall denote an interval in the space R* of the
form

PP={(t,x)eR* 0<r<1,0<x<g1}).

A function z: P2 R is called absolutely continuous on P? if the function F,(Q)
associated with z is an absolutely continuous function of an interval Q < P?,
and the functions z(0, x) and z(¢, 0) are absolutely continuous as functions of
one variable (cf. [8], [10]).

The space of all absolutely continuous functions on P? will be denoted by
W(t, x) or, shortly, by W.

The space W has the following properties:

(a) if ze W, then there exist partial derivatives (in the classical sense) dz/dt,
0z/0x, 8*z/0tdx and the total differential almost everywhere on P2 (cf. [9]),

(b) if ze W, then z is an absolutely continuous function in the sense of Tonelli,

(c} a necessary and sufficient condition for z to be absolutely continuous on P2
(ze W) is that z possess the following integral representation:

4 x t x
z(t, x) = c+ [ ') dr+ [ P(s)ds+ [ [ 1*(x, 5)dds,
0 0 00

where ceR and [', 2, I? are integrable functions. Moreover,

aZz(t, X) 3 52(5, X) t r 3
o = Lt %), = | (t)+£l (t, s)ds,
0z(t, x) !

P P(x)+ [P(x, x)dr  for (¢, x)e P? ae. (cf. [9]).
0
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In W we introduce the norm by the formula
oz(:, 0) 0z(0, *) a*z(-, ")
ot dx otox

It is easy to prove that W with this norm is a separable Banach space. By
W" = W"(t, x) we denote the nth Cartésian power of W = W(t, x).

Let Ay, A,, A, be nxn matrix functions essentially bounded on P2,
g a function integrable on P?, and ¢,, ¢, vector-valued functions absolutely
continuous on [0, 1] and such that ¢,(0) = ¢,(0). In W"(t, x) we shall consider
a system of differential equations of the form

(1) Nzllw = lef+ |——

L1(0,1) L1(0,1) u(m'

2
(2 :W_Zo(ts x)z(t, x)+ A, (t, x)a (t, x)+A,(t, x) (t x)+¢(t, x)
with the boundary conditions
3) z(t, 0) = ¢,(t), 2(0, x) = @,(x).

A function ze W" is called a solution of the Darboux-Goursat problem
(20H3) in the sense of Carathéodory if z satisfies equation (2) for a.e. (t, x) € P?
and the boundary conditions (3) for any ¢ and x from the interval [0, 1].

The following theorem holds:

THEOREM 1, The system (2) with boundary conditions (3) has a unique
solution in the sense of Carathéodory in the space W"(t, x) (cf. [8], [10]).

Remark 1. By a simple transformation of variables one can prove that (2)
with the “end” boundary conditions

4) 26, )= 0,0, 21, %) =0, (@:(1) = ¢,(1))
has a unique solution ze W"(t, x).

Remark 2. The definition of absolutely continuous functions of two
variables is easily extended by induction to the space R", n > 2 (cf. [8], [10]).

Theorem 1 gives a sufficient condition for the existence of a solution in the
sense of Carathéodory for the Darboux—Goursat problem. The existence of
a solution in the classical sense was considered in many papers and mono-
graphs. Much information on this subject can be found in [1]. In [6], .
a sufficient condition for the existence of a solution in the Sobolev space was
given.

3. The maximum principle for a Bolza problem. In the space W"(t, x) let us
consider a distributed control system of the form

(5) (t x) = Aqy(t, x)z(t, x)+ A, (t, x) (t X)

6t6

+ A,(t, x) (t x)+ B(t, x)u(t, x)
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with the boundary conditions

(6) z(t: 0) = (Pl(t)s 2(0, x) = ‘Pz(x)

and the performance index
11

(7 F(z,u) = H(‘—o t, x)z(t, x)+c, (¢, x) (t, x)
00

+c,(t, x) (t x)+d(¢t, x)u(t, x))dtdx
+ (el(t)z(t I)+ez(t) (t 1))dt

+

Q= = Oty e

(e3(x)z(l x)+e4(x) (1 x))dx

We shall assume that:

»
(al) Ag, A,, A, are n x n matrices with entries absolutely continuous on P?

0A, 0A, 04,
Fratir ( (t x) and

%(t, x) exist almost everywhere on P? by Lemma 3 of [9]),

(a2) B is an nxm matrix function integrable on P?,

and with essentially bounded derivatives

(a3) ¢4, ¢, are absolutely continuous functions on [0, 1], and ¢,(0) = ¢,(0),

(a4) u is an m-dimensional control vector such that u(t, x)e M for ae.
(t, x)e P? and u is an essentially bounded function on P% (ue L7 (P?);
here M is a convex and closed subset of R™,

(@S)  zis a trajectory of system (5) which belongs to the space W" = W"(t, x)
(z is the solution of (5) in the sense of Carathéodory; cf. Theorem 1),

(a6) ¢, is an integrable function on P, ¢, and c, are absolutely continuous
on P? and éc,/dt, dc,/0x are essentially bounded,

(@7) d=adl(t, x) is an essentially bounded vector-valued function,

(a8) e, =e,(t), e; =ey(x) are integrable functions on [0, 1], e, = e,(t),
e, = e4(x) are absolutely continuous on [0, 1], and ¢,(1) =0

Besides system (5)6) we shall consider an equation of the form

>y
( x) = _(CO(ts X)—Ag(t, x)lﬁ(t, JC))

®) otdx

:t(cl(t x)— A (¢, X)Y(t, x))

+5(Cz(t, x)— A3(t, )Y ¢, x))
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with the end boundary conditions

©) Uie, ) =a,(0), ¥, x)=ay(x),

where «; and a, satisfy the Volterra equations

1
—ay(0)+ [ (430, Dary ()—e, () —cy(t, D)de—e,(t) = 0,

(10) o
1y (1)— o3 () + [ (A1, Xz ()= e3(x)— ¢, (1, X))dx—e4() = 0.

System (8) will be referred to as the conjugate system to the Bolza optimal
control problem (5)7).
We shall prove

LEMMA 1. The conjugate system (8) with boundary conditions (9) has
a unique solution \ in the space of absolutely continuous functions on P?

(W e W(t, )

Proof. The [unctions e, satisfy assumption (a8). So, system (10) has
a unique solution a; = a, (¢), «, = a,(x), and the functions «,, «, are absolutely
continuous on [0, 1]. Moreover, «,(1) = a,(1). Applying Theorem 1 and
Remark 1, we obtain the assertion.

THEOREM 2 (The maximum principle for a Bolza problem). If

(i) a control u* and the corresponding trajectory z* are optimal for the
control problem (5}(7), _

(i) system (5)7) satisfies assumptions (al)-(a8),
then there exists a unique absolutely continuous function W = y(t, x) which
satisfies the conjugate system (8), the transversality conditions (9) and the
maximum condition

(11)  [B*(t, x)y(t, x)—d(t, x)Ju*(t, x)
= max [B*(t, x)y (¢, x)—d(t, x)Ju for ae. (t, x)e P2
ueM
Proof. Without loss of generality-one can put ¢, = ¢, = 0 in (5)«7). In
. the proof of the maximum principle we shall apply the Dubovitskii-Milyutin

method (cf. {3]). Denote by Wj(t, x) the subspace of W"(t, x) consisting of
functions z = z(t, x) such that z(¢, 0) = 0 and 2(0, x) = 0. Put E = W§ x L%,

Q, = {(z, u)e E; u(t, x)e M for ae. (t, x)eP?},
Q, ={(z, weE; z,,—Ayz—A,2,— A, z,— Bu = 0},

Our problem is thus to minimize the integral functional F = F(z, u) (cf. (7)) on
Q=0,nQ,. Just as in [3], Ch. 12, we can calculate the cone of decrease K
and the dual cone K¥ at (z*, u*).
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11
(12) Ko ={(, 0)eE; [[(coZ+c, z,+cyZ,+du)dtdx
00

'*‘}(e z2(t, 1)+eyZ,(t, l)dt+feg (1, x)+e,Z,(1, x))dx < 0}
0

= {(z, W)eE; F(Z, @) <0},
(13) K¢ ={f,€E*; fo(z,0)= —A, F(Z, @), A, = 0}.

Let K, be the cone of feasible directions for Q1 at (z*, u*). Then if f; e K%, it
follows that f, =(0, f{), where fje(L%)* is a support to QF = {uelL™;
u(t, xye M} at u* (cf. [3], Th. 10.5). From the Lyusternik theorem it follows
that the tangent subspace K, to the set Q, is of the form

(14) K,={( 0)eE; 5, = Ay +A,7,+ A, + Bil).

The dual cone K% consists of all functionals f, € E* such that f,(Z, #) = 0 for
(z, @) e K,. The application of Theorem 6.1 of [3] to our problem implies that
there exist fj, f,, f,€ E*, not all zero, such that, for all (Z, #)€eE,

(15) fo(fs i‘)"’fl (Z_, a)+f2(5’ a) = 0,

where f; is given by (13), f, (Z, &) = f1(#) is a support to Q) at u* and f, vanishes
on K, (cf. (14)). It is easy to notice that K; nK, # 0. Thus, without loss of
generality, we can put 1, = 1 (cf. [3], Ch. 6, Remark 3) and the Euler equation
(15) takes the form

11 1

(16)  —{[(coZ+c 2+ z, +di)dtdx— [(e, 2(¢, 1)+ e, Z,(t, 1))dt
00 0

1
—f(e3z(1, x)+ e z, (1, x))dx+ fi(@+/2(z, 7)) =0
0
for (z, #)eE.
Let i be arbitrary. Then # determines a solution zZe WY of the equation
(17) Zy=AgZ+ A Z+ A,z +Bil.

With- this choice of Z and #, we have f,(Z, @) = 0 (cf. (14)), and so, equation
(16) becomes

11 1
—[{(coz+c 2, +c, 7, +din)dtdx— [(e, Z(t, 1)+e,Z,(t, 1))dt
Q00

0

i(e3z(1 X)+eyZ,. (1, x))dx+fi(@) =
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Integrating by parts and using the conjugate system (8), we obtain

11

[ S+ WA, + (WA, — Y A ) 2~ dd)dtdx

00

— e (1, x)2(1, x)dx— jcz(t D z(t, 1)dt
— e, z(t, 1)dt— jezf,(r, 1)dr

e 2(1, x)dx— fe4z (1, x)dx -+f{(#) =

Oty e O ey b O Sy =

By a simple transformation and by formula (17) the Euler equation (15) takes
the form

11 1
(18) jg(B*lﬁ—d)fidtdx+ g[ill(l, DN—y(1, x)
+ [(A¥(1, XY (1, x)—es(x)—c (1, x))dx —e,(x)] Z,(1, x)dx

+

O temry 4 W Ty

[ f(A%e, DY, D—e,()—c,(t, D)de

—y(t, D—e ()] Z,(t, Ddt+f(@) =

The functions (¢, 1) and (1, x) satisfy equations (9)-(10); thus the Euler
equation (18) reduces to

(B*y —d)adtdx +f{(%) =

Oty el
O temamy s

Since the functional fy is a support to Q' = {ueL%; u(t, x)e M a.e.} at u*€Qj,
we obtain the assertion.

Remark 3. Necessary conditions for optimality for systems of Dar-
boux-Goursat type were investigated in [2], [5], [7]. In [5] and [2], the
maximum principle for piecewise continuous controls is proved under the
assumption that the system of partial differential equations considered pos-
sesses a unique solution in the class of continuous functions. Moreover, the
existence of an optimal control is assumed. In [7], the optimization problem is
considered in the space of measurablc controls. The solutions of the system of
partial differential equations (trajectories) are understood in the generalized
sense and belong to a special Sobolev space. Making use of a variational
method analogous to that used in [2], the author of [7] proves the existence of
(in general, infinitely many) Lagrange multipliers in L_ and the maximum
condition.
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In our paper, the optimization problem is considered in the space of
essentially bounded controls, and in the space of absolutely continuous
trajectories. Similarly to ordinary linear systems, the existence of Lagrange
multipliers in the space of absolutely continuous functions and the maximum
condition are proved. Owing to the fact that the optimization problem is
considered in the space of absolutely continuous functions on the plane, it was
possible to apply the Dubovitskii-Milyutin method. There is no difficulty
either in proving the existence of an optimal process (cf. [4]). The proof is
analogous to the case of ordinary linear systems considered in the space of
absolutely continuous functions of one variable.
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