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REMARKS ON CONGRUENCE RELATIONS
AND WEAK AUTOMORPHISMS
IN ABSTRACT ALGEBRAS

BY

K. URBANIK (WROCLAW)

In this note we adopt the definitions and notations given by E. Mar-
czewski in [2]. In particular, for a given abstract algebra U = (4; F)
with a carrier A and a family of fundamental operations F we denote
by A™ the family of all n-ary algebraic operations. Moreover, for any
positive integer p, R,(A) denotes the p-reduct of A, i.e. the algebra
(A; A®), In the present note we consider finite algebras only and by «
we denote the number of elements of carrier A of . An equivalence
relation ~ in A is said to be a congruence relation in U if for every n > 1
and every feA™ the relations a; ~ b; (i =1,2,...,n) imply the relation
flay, agy ..., a;) ~f(by, bgy..., b;). Bach permutation h of the set A
induces by the formula :

f*(-’”n Layeeey Xp) = h(f(h-l(ml)y h= (), ..., h—l(wn)))

a mapping from the family of all finitary operations in U onto itself.
Following A. Goetz and E. Marczewski (see [1]) we say that a permutation
h of A is a weak automorphism of the algebra U if the induced mapping
f —f* transforms the family of all algebraic operations in % onto itself.
If f =f* for every algebraic operation f, then A is an automorphism
of A.

‘E. Marczewski remarked that each automorphism of R,(U) is an
automorphism of A and asked the following two questions:

1. Is every congruence relation in R,(WA) a congruence relation
in A?

2. Is every weak automorphism of R,(A) a weak automorphism
of A?

The aim of this note is to give an affirmative answer to the first
question and a negative answer to the second one.
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Congruence relations. We start with a simple lemma.

LEMMA. Let ~ be a congruence relation in R,(A). If feA™, a,, a,,
ceryGpeAd and a, ~ a,, then

flay, agy agy ..oy ap) ~f(ay, a;, ag, ..., ay).

Proof. We shall prove the Lemma by induction with respect to n.
For n < a the Lemma is obvious. Suppose that n > a. Further, suppose

that the Lemma is true for all (»—1)-tuples of elements of A and all
operations from A™Y. Put

by = fayy @gy A3y ... 4n), by = f(ay, @y, a5, ..., ay).

We have to prove that b, ~ b,.

First assume that at least two elements -among a,,as,...,a, are
identical, say a, = a,, where p #* ¢ and p, qe{1,3,...,n}. We define
an auxiliary (n—1)-ary algebraic operation g by the formula

G(Byy Bay ooy Bg_1y X1y ooey Tn) = F(B1y Bay ovy Bg_1y Tpy Tqiny oovy Tn)-
It is clear that
by = g(ayy @ay A3y ...y Bg_1y Qgyyy -2 0y Q)

by = g(a1, @1, 05y ..y @q_15 Qg 1y .00y Oy).

Hence, by the inductive assumption, we get the relation b, ~ b,.

Now suppose that all elements a,, ag, ..., a, are different. In this
case, by the inequality n > a, we infer that n = a+ 1. Consequently,
there exists an index re{1,3,...,n} such that a, = a,. If r = 1, then
the relation b, ~ b, is obvious. Suppose that r > 3 and put

By(®yy @y ooy Tr_yy Triry ooy @n) = F( @1y Tay ooy Br_yy Tay Tryry ooy Tn)y

h2($1, Loy ooeyTp_19 L1y eeey Zp) =f($1’ Tyy T3,

Of course, h,, h,e A® " and

ey Ly 1y Loy Lpyyy eney Tp)e

by = hy(@1y Ggy eevy 1y Grinyeeey Ba),
(1)
by = ha(@yy Ggy evvy Gr_yy Qryp1yoeey @),
(2) hl(al’ al’ aa’...’ar_l’ar+l,-oo,an)
= ho(@yy Oy, Ogy ooy gy Gryyy oeey @),
Further, by the inductive assumption, we have the relations

hi(@yy oy Qgyeuny @r_1y Qrypyy onny @) ~ hy(ay, a4, ag, ..., a,_, Arp1y

ceuy Op)
hy(ay, ay, ag, ..

cy Qr_1y Oryry eney @) ~ ho(B, @1y Qg oy G yy Gryyy oney ).
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Hence and from (1) and (2) the relation b, ~ b, follows, which com-
pletes the proof of the Lemma.

THEOREM 1. Each congruence relation in R, (A) is ‘a congruence
relation in A.

Proof. To prove the Theorem it suffices to prove for n > 1, feA™
and a,,a,,...,0a,,b,eA that the relation a, ~ b, implies the relation
flay, agy ...y ay) ~f(by, @zy ..., a,). We shall prove the last statement
by induction with respect to mn. For n < a our statement is obvious.
Suppose that n > a and the statement is true for all n-tuples of elements
of A and all operations from A™Y, Put

(3) ¢y =f(ayy @zy .oy @y), € = f(by, ay,...,a,).

Since n > a, at least two elements among a,, a,, ..., a, are identical.
Suppose that a, =a,, where p<gq and p,qe{l,2,...,n}. We
define an auxiliary (n»—1)-ary algebraic operation A by means
of the formula

Obviously ¢; = h(a,y, aqy ..., q_1, Gg,1, ..., ;) and, by the inductive
assumption,
(4) Cl Nh(bl’az’...,aq_l’alq+1’o.-’an)-

First consider the case p = 1.. By Lemma we have the relations

B(byy@oy ooy g1y Qgyprynny @q) = f(byy Ggy ooy @g_yy byy Ggyyoeey )

Nf(bn Aoy eoey Qg_19 A1y Bgiy ooy an) =f(b17 Aoy eeey a’n)-

Hence and from (3) and (4) the relation ¢, ~ ¢, follows.
In the remaining case p >1 we have the formula

Ca = h(by, @y ..ey Ug 1y Ogp1y ...y )

which, by formula (4), implies the relation ¢, ~¢,. Theorem 1 is thus
proved.

Weak automorphisms. Since the permutation group of the carrier
of a finite algebra is finite, we infer that for every finite algebra U there
exists an index p such that each weak automorphism of R,() is a weak
automorphism of . The least index p in the last statement will be denoted
by p (). Obviously, the affirmative answer to the second Marczewski’s
question is equivalent with the inequality p (%) < a.
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Taking into account the complete description of all two-element
algebras given by E. L. Post in [3], we can prove the inequality p () < 2
for all two-element algebras . But, in general, the inequality p (%) < «
is not true. Namely we shall prove the following theorem:

THEOREM 2. For every integer k there exists a three-element algebra A
for which the inequality p (W) >k holds.

Proof. Let k¥ be an arbitrary positive integer and 4 = {0, 1, 2}.
We define n-ary symmetrical operations f, and g, on A as follows:
fa2,2,...,2) =1, ¢.(2,2,...,2)=0 and fo(zy, 2y ..., x) =0,
On(®yy Xay ..., ) = 1 otherwise. Put A = (4; fi, gry1). By F, we shall
denote the family of n-ary operations on A consisting of the trivial ope-
rations e{, ef”, ..., e”, the constant operations 0, 1 and the compo-
sitions fj( e{';), e‘,';), ey €5)y Gria (e, €y ..., 6 ), Where iy, 4y, ..., 0y
€{1,2,...,n}. Since

fk(gk-{»l(wl? Loy eeey wk+l)’ Tay ooy a’k) =0
and
gk+1(fk(‘/v17 Xy euny i)y Loy ooy mk+1) =1,

we infer that 0 and 1 are algebraic constants in . Consequently, all
operations from F, are algebraic in the algebra U. Let u,, uy, ..., ureF,
and v,, vy, ..., V%, €F,. If at least one operation among wu;, us, ..., U
and among v,,%,, ..., ¥, 18 non-trivial, then fi(u,, usy ..., u) =0
and gx,,(v1, Vay ..., V1) =1. Thus the family F, is closed under the
composition with the fundamental operations f; and g;,,. Hence we
get the equation A™ = F, (n = 1,2,...). From this equation it follows
that g;,, is the only operation from A**) depending on every variable
and, consequently, the operation fi,, is not algebraic in W. Further,
taking into account the formula

Gre1 (@1 By oovy Th_1y Biey Bi) = Gu(@yy Loy o0y &),

we infer that the family A® consists of the trivial operations e{, e,

e, the constant operations 0, 1 and the compos1t10ns fulef?, }") }"’),
gk (eﬁ'?, e, ..., 6), where §i,ja, ..., dre{l, 2, ..., k}. Consequently,
R (N) = (4; fu 9r) -

We define a permutation » of A by the formulas 2(0) =1, A(1) =0
and h(2) = 2. It is clear that fr = g, gr =fn (n =1,2,...), where
f—f* is the mapping induced by k. Hence it follows that this mapping
transforms the family of fundamental operations of R.(UA) onto itself.
Thus kb is a weak automorphism of R, (). Further, we know that fx,,
is not algebraic in A. Hence it follows that g, is not algebraic in U and,
consequently, i is not a weak automorphism of %. Thus p (%) > k, which
completes the proof.
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