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Let A be a (universal) algebra (), and for » > 1 let p, (W) denote
the number of n-ary polynomials over 9 depending on all n variables;
let p,(A) be the number of non-constant unary polynomials excluding
¢s (the projection, in other words, x); let p,(A) be the number of constant
unary polynomials (which is the same as the number of nullary polyno-
mials if there is a nullary operation).

A sequence {Pgy ...y Pp, ...y is called representable if, for all n, p,
= p, (A) for some algebra A.

In this paper some sufficient conditions for representability will be
given.

An easy combinatorial argument shows that the problem of represen-
tability of sequences is equivalent to Problem 42 of [1], p. 195; thus
the results of this paper are partial solutions of Problem 42.

THEOREM. Fach of conditions (i)-(iv) listed below is sufficient for the
representability of the sequence (Poy Py --oyPny -0t

(i) po > 0;

(ii) po = 0 and p, > 0 for all n > 0;
(ili) py = 0, 2n divides p,,, and Py, ; > 0 for n > 0;
(iv) po = 0, p, > 0, and n divides p, for all n > 0.

Qbserve that an algebra representing a sequence satisfying one of
(ii)- (iv) has no constants and is not idempotent (p, = 0, p, > 0). It is likely
that (ii)-(iv) comes close to being necessary for non-idempotent algebras
without constants. Algebras with constants are taken care of by (i).

Thus the remaining problems are: firstly, to try to strengthen
(ii) - (iv) for non-idempotent algebras without constants (P 691); secondly,
to consider idempotent algebras without constants (P 692). The paper
of Urbanik [2] could prove to be useful for the latter problem.

(*) Research supported by the National Research Council of Canada.
(!) Notions and notations of this paper are that of [1].
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The proof of any of (i)-(iv) consists of two steps. First, we construct
a set A, and a set of functions ¥ on A. Second, we prove that F contains
all projections and F is closed under substitution of functions, hence
F is the set of all polynomials of the algebra {4; F'). Then it becomes
obvious that {(A4; F') represents the sequence it is supposed to represent.

The first steps contain the ideas behind the theorem. The second
step is completely routine but sometimes long and tedious. For instance,
in case (iii) there are three kinds of functions, so there are nine statements
to be proved about substitutions, which break down to twelve cases.
Therefore we shall present only the constructions and leave the verifica-
tions of the second steps to the reader.

Let p = <{Poy+-+y Ppy--.» be a fixed sequence, and a the smallest
ordinal with p, < a for all 4.

For every ¢ < a we take a countable set 4, such that 4; and A; are
disjoint for 4 # j.

Case (i). Let |K| = po+1, ko, k1eK, ko # k,; let K be disjoint to
the 4;. Set A = K u |J (4;]t< a). For every keK, k # k,, we define
a nullary operation f, whose value is k. For n > 0, 0 < ¢ < p, we define
an n-ary operation f on A as follows:

F (g, .. @y y) = Koy if @y ..oy @y r€dyy {@oy .oy ay 3} =m,
k,, otherwise.

Let F consist of all projections (variables) f; for ke K, k # k,, and
fi for 0 < n, i< p,. Then {A4; F) represents p.

(Note that an f;* substituted into an fi" always yields f; ; that is why
this construction does not work unless p, > 0.)

Case (ii). Let A consist of the union of the A; and three more elements:
toy t1y la-

For every n, 0 < n, we construct an n-ary operation ¢g":

to’ if ao = s — an_l = to,

"(@gy eeny @y_y) =
g"(@0s -2 s t,, otherwise.

For every n, 0 < m,and ¢, 0 < ¢ < p,, we define an n-ary operation f;":

to, if a/o=... = ﬂ—l=t0’
fi(@gy -eny @, 1) = 1t if ag, ..., a, ,¢A4; and [{a,, ..., a1} = m,
t,, otherwise.

Let F consist of all operations ¢" and f* and all the projections
(variables). Then (A; F) represents p.

(Note that an f* substituted into an fi" gives a g*; hence we must
have p;, > 0 for all ¢ > 0 for this construction to work.)
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Case (iii). Take A as in (ii). For odd » we define ¢g":

ty, if the number of a; equal to ¢, is odd,
n —_

9 (@gy eoey Oy_y) = )
t,, otherwise.

Also, for an odd n and 0 < i< p, we define f:

t,, if the number of a; equal to t, is odd,
[i@oy ey @y y) =18y it agy ...y a,_ €4y, {ag, ...5a,_,}| =n,
ty, otherwise.

For an even n, i< n, and j < p,/n we define A7;:

ty, if a; =1,
hii(@gy ey @yy) =181y i {@gy...,08,_1}ed;, [{@g, ..., a, }| =n,
iy, otherwise.

Note that for » odd we defined ¢" and p,—1 operations f;p,
operations altogether; for even » we have n(p,/n) = p, operations h;.
Thus we take F' as the set of all projections, ¢" (nodd), f' (n odd),
and %7; (n even); then (A; F) represents p.

Case (iv). For every n > 1 we take the &}, of case (iii), ¢ < n, j < p,/n.
For n =1 we take ¢g* (of case (iii)) and hg; for j < p,—1.

This concludes the proof of the Theorem.

In conclusion we remark that even though the proof allows the
p; to be arbitrary cardinals, and sequences arbitrarily long (only the
size of the A4, has to be increased) the interesting case is when all p, are
finite and the sequence is an w-sequence.

For w-sequences of integers it is reasonable to ask when is it possible
to represent such sequences by finite algebras of finite type. Our construc-
tions do not shed light on this problem. Note that any one of the four
cases covers 2% sequences while finite algebras of finite type represent
only 8, sequences.
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