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0. Introduction. Let 4 and B be structures for the language L, and let T;
and T, denote Th(A4) and Th(B), respectively. In this paper it will be shown
that the models of T; x T, = Th(A4 x B) can always be elementarily embedded
in the direct product of models of T; and T,. Also, a relationship between
the forcing companion of T; xT,, T;, and T, will be given; and as an
application, the model companion of the finite direct product of the theories
of linear orderings will be found. Furthermore, given an arbitrary theory T, a
characterization of precisely when T is the direct power of another theory is
given.

Many of the results contained here are in the author’s dissertation [21].
Our notation will be as in [4] with the exception that we use |4| to denote
the universe of the structure 4, and we assume familiarity with [16].

1. Preliminaries. In this section we introduce some basic definitions and
ideas which will be used throughout the remaining parts of this paper.

Let xq,..., X,,... be a list of variables for the language L(X) and
X0s Y05 --+» Xns Yn» --- D€ a list of variables for the language L(x, y). Then
Weinstein in [23] associates with each formula ¢ of L(x) a formula ¢’ of
L(x, y) and uses ¢’ to characterize those sentences which are preserved under
direct power. Here ¢’ will be used to develop a connection between the
relations in T, and T, x T;.

DEerFiniTION 1.1. Let ¢ be a formula of L(xX). Then a formula ¢’ of
L(x, y) is defined inductively as follows:

(1) For atomic R(ty,...,t) or t, =t,, @' is

R(ty,...,t) AR(t},...,t)) or ty=t, Aty =t

respectively, where ¢; for each i is the resulting of replacing each variable x;
in ¢; with y;.

(2 If o is ~¢,, then ¢ is ~ ¢].

() If ¢ is (¢1 = @2), then ¢ is (¢} — ¢)).

@ If o is Vx;¢,, then ¢’ is Vx;Vy, ;.
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The following lemma states that satisfaction in 4 xA4 is effectively
reducible to satisfaction in 4 by means of ¢'.

Lemma 1.1. Let  ¢o(xy,...,x,) be a formula of L(x) and
(apy, ay4)s-.., (ag,, ay,) be in |A x A|. Then

AXA":‘»O[(aOl’all)’-'-a(aOnv aln)] l.ﬁ. A'= (p’[aOI’alls""aOn’ aln]'

Proof. By induction on the complexity of ¢.

CoroLLARY 1.2. Let ¢ be a sentence of L(x). Then ¢ is true in A x A iff
@' is true in A.

The following definition and result are due to Galvin [7].

DerFiniTiON 1.2 Let x4, ..., x, be distinct variables. An autonomous sys-
tem is a triple (S, m, ¢) satisfying the following conditions:

(1) S is a finite set of formulas with free variables among x,, ..., x,.

(2) m is a binary operation over S.

(3) ¢ is a function over S xS whose values are sentences in the language
of Boolean algebras.

(4) For each structure A and elements ay, ..., a,€|A| there is exactly
one ¢ €S such that

AEo¢lay,...,a,].
(5 If o, Y €S and

AEolay,...,a,] and BEVY[by,...,b,],
then

A XBF n((P, W)[(al’ bl)a cevy (am bn)]
(6) Let @, Yy €S and f,, ..., f,€|4|" be such that, for each i€l,

AEo[i0), ..., (D]
then

Lrmma 1.3. For each formula ¢ with the free variables x,, ..., x, there is
an effective procedure by which one can find an autonomous system (S, m, o)
and a subset S, of S such that

I“(P“"\/:Q’: QES,,.

2. Elementary embedding. Waszkiewicz and Weglorz prove in [22] that
if A and B are countable saturated structures, then 4 x.B is also a countable
saturated structure. Also, in [24] it is shown, as a corollary, that if 4 and B
are countable saturated models of 7, and T,, respectively, then any count-
able model of T, x T, can be elementarily embedded in A x B. The next two
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results will generalize this latter result and state that for any model M of
T, x T, there exist two models 4, and B, of T, and T,, respectively, such
that M is elementarily embedded into A, xB,.

THEOREM 2.1. If M is a model of T, x T,, then there exists a model A of
T, such that M is elementarily embedded into A, x A,.

Proof. Let I'y, be the elementary diagram of M and suppose for a
contradiction that I'), is not consistent with T;. Then there exists a finite set
of sentences !¢,,..., o, of I, such that T, ~y’, where y is
@, A... A @, Assume M, ..., m, are the only new constants in ¥; then
Mgy, Myq, ..., Mg, My are the new constants in Y'. Let x,, y;, ..., X;, y, be
appropriate variables substituted in Y’ for mgy,, m,,, ..., mgys, M, respective-
ly. Then, since my,, ..., m;; do not occur in the sentences of 7;, we have

g ’h017 ey 'ﬁls
Ti,FVx, Vy,...Vx, Vy, ~|//( )
Xy ooy Ys

Hence this new sentence is true in any model A of T; and, by Corollary 1.2,
Vx,...Vx, ~¢ is true in any model of T, xT;, so it is true in M. Let
my, ..., my be the interpretation of m,, ..., m; in M. Then M satisfies ~y
. . Xis eney Xg .. . X
with m,, ..., m,, but this means that ~<p,-(_l _) for some i is in the
my, ..., m,

elementary diagram I',,, and this is a contradiction to the fact that

o; (x" x_’) in I'y,. This shows that I'y, is consistent with T;. Let 4 be a

my, ..., m

model of I'),u T, and define

f: IM| =|A; xA4,|
by

f(m) = (’"o , ml

Suppose @(x;, ..., X,) is satisfied with m,, ..., m, in M, since (p(':"""i")
19 oo
is in Iy. Then, clearly, ¢'(x, y1,..., X5, o) is satisfied in A, with

mal, miL, ..., mal, miil. This shows by Lemma 1.1 that ¢ is satisfied in 4,

x A, with f (ml), ...,f(m,). Hence f is an elementary embedding of M into
A, XAl . - .
The next result generalizes Theorem 2.1 to direct product, and its proof
uses Waszkiewicz and Weglorz’s ideas in [22]. |
THeOREM 2.2. If M is a model of T, x T,, then there exist models A, and

B, of T, and T,, respectively, such that M is elementarily embedded into
A, xB,.
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Proof. Let I'y, be the elementary diagram of M and let ¢ be an element
of I'y. Suppose m,, ..., m, are the only new constants in ¢. Then replace
each of these new constants with a new appropriate variable xg , ..., X .

Let 2 denote the set of all formulas obtained from those by replacing the
new constants from |M| occurring in each formula ¢ with appropriate
variables x, for me|M|, and let L denote this extended language by
variables. Since M is a model of I'y,, 2 is a maximal consistent set of
formulas and induces an ultrafilter in the Boolean algebra of formulas of
language L. For each element ¢ of L, let S, denote the autonomous set for ¢
and form

S=TIS,.

@el

Let P be any ultrafilter in the Boolean algebra of formulas of L and let

Sa: = hl’h LT ) 'I’n:

Suppose y; fori =1, ..., n do not belong to P. Then ~y; foralli=1,...,n
belongs to P. Since S, is an autonomous set,

~Wrv...vy) =0,

and therefore 0eP, which is a contradiction to the fact that P is an
ultrafilter. This shows that P NS, is not empty, and thus P can be thought
of as an element of S by defining P(p) =y iff S, ~nP = ¢}. The fact that
the image Y is uniquely determined follows from the assertion that, in an
autonomous set S,, Y; AY;=0 for i#j Let Z=85xS and for each
ultrafilter P define

Z} =W,y in S, xS,: yxy=P(p)} and Z'=]]Z].
pel

Define the discrete topology on S, and, by using Tychonoff’s theorem, Z is
compact. The following observations are made in order to complete the rest
of the proof:

(1) Z® is closed.

In order to show (1), take xeZ—Z? and suppose x is a limit point of
Z"?. Since x does not belong to ZF, there exists at least one of its
coordinates, say ¢;, such that ¥ xy # P(¢;). Let

W=T1]0,, where O, =(¥,7)} and O, =S, xS, for ¢ # ¢;.
¢elL
Then W is open, contains x, and Wn Z* is empty. Hence x cannot be a limit
point of Z*. Thus Z" is closed.
(2) For any ultrafilter P which is obtained from a model M of T; x T, as
above, there exist ultrafilters Q,, Q, in the Boolean algebras of formulas of L
induced by T; and T,, respectively, such that (Q,, Q,) is in Z*.
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In order to show (2), let T, ., be the closed subset of Z" consisting of
all those (f, g) for which

Tiul'f((pl)avf((pk): and TzU:‘l((I’l)’, g((Pk)}

are consistent. Since {P(¢,),..., P(¢y)} is a consistent set in T; xT; and
A xB is a model of T; x T, for models A and B of T; and T,, respectively,
then there exist (a,, b,), ..., (a,, b,) in |4 x B| such that

AxBE P(p)[(ay, by), ...,(a,, b,)] fori=1,..., n.
This shows that

A|=./Ii[al""’an] and B#yi[ble-“abn]

for some y;, y; €S,, and y; xy; = P(¢;). Hence T, , is not empty. By a

similar argument to (1), one can show that T, _, is closed in Z"?. Also, it is
clear that

T,...o. < T

and this produces a chain of closed sets with the finite intersection property.
Since Z* is compact, the intersection over this chain is not empty, and let
(f, g) be an element of this intersection. Every finite subset of

Tiv'if(e): eel} or T,uig(e): ¢eL;
is consistent, since for any ¢,,..., ¢, we have (f,g)eT, ., By the
Compactness Theorem, the sets

Tiv.f(e): weL] and T,u g(e): @€L]

are consistent.

3) T, u . f(p): pelL! is complete.

In order to show (3), let ¢ be a formula of L and S; = §, as in Lemma
1.3 such that

4y Foe\/ly: yes,).
Since f(¢) €S, either f(p)€S, or f(p)eS,—S;.
Case 1. f(p)€S,.

Take A to be any model of T, U {f(¢): ¢ €L}, which means that 4 is a
model of T; and there is a sequence S of elements of |4]| such that, for all ¢,
AE f(@)[S]. Since | f(p) = ¢ by (1), it follows that A ¢ [S]. Therefore,

Tu.f(9): weLiF o.
Case 2. f((p)eS,e—Sl.

The analogous argument as in Case 1 shows that

Tu . f(e): ¢eLit ~o.
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Let (A,, S;) and (B, S,) be any models of
Th(A)v i f(p): ¢eL] and Th(B)uU g(p): @€L),
respectively. Then define a function. h: |M| —|A4, xB,| by
h(m) = (Sy (xz), S2(xz)-

Suppose ¢(x,, ..., x,) is a formula of L and m,,..., m, a sequence of
elements in M such that

MEo[m,,...,m,].
Thus

Clearly,
AiE f(@)[Si(xm,), .-, S1(xz)] and By g(9)[S, (Xa,)s o5 S2(x5)]
By Lemma 1.3, since f(¢) xg(p) = P(p), we have

A, xB,E @o[h(m,), ..., h(mp)],
and hence M is elementarily embedded in 4, xB,.

3. Model completeness and direct product. In this section the concept of
forcing companion TF of the theory T is studied and it is shown that the
model companion of T; x T, is always the same as the model companion of
T{ x T{. This is used to show that the model companion of a direct product
of two infinite linear orderings is always (Q x Q)f, where Q is the theory of
rational numbers with its usual ordering. Also, another proof of preservation
of w-categoricity under direct power is given. Finally, for a given theory T,
a characterization of exactly when T is the direct power of another theory is
given.

One can be motivated by the fact that frequently for T model complete,
Tx T is model complete; however, there are some simple counterexamples to
this conjecture [11]. The next result does show this phenomenon occurring
in some generality in the opposite direction.

LemMmAa 3.1. Let T be a complete theory with model compdnion T*. If
Tx T is model complete, then there exists a structure B such that Th(B) is
model complete and Th(BxB)=TxT. ’

Proof. Since Tx T can be taken to be II,, it follows that (Tx T) is IT,.
Also, since T* is the model companion of T and is model complete, by a
theorem of [16] we have (TxT) < T*. Let B be any model of T*. Then
Th(BxB)=TxT.
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Saracino in [20] proves that w-categorical theories have w-categorical
model companions. This and Lemma 3.1 will give the following corollary:

CoroLLARY 3.2. Let T be an w-categorical complete theory. 1f TxT is
model complete, then there exists a structure B such that Th(B) is model
complete, w-eategorical, and Th(B xB) = TxT.

The next result is concerned with the relationship between the forcing
companions of T; and T, and the forcing companion of T; x T;.

THEOREM 3.3. Let T, = Th(A) and T, = Th(B); then
(Ty x ) =(Tf xT{)".

Proof. Let M be a model of T; x T,. Then by Theorem 2.2 there are
models A, and B; of T; and T,, respectively, such that M is elementarily
embedded into A; x B,. Since T; and T, are mutually model consistent with
Tf and TY, respectively, A; and B, can be embedded into A’ and B'. This
shows that T; x T, is model consistent with T x 75 . An analogous argument
shows that Tf x T is model consistent with T; x T,. Thus the result is
proved.

Let T be the theory of any infinite linear ordering. Then it is observed
in [20] that the model companion of T is the theory of rational numbers Q
with its usual ordering. The following application of 3.3 produces the model
companion of the direct product of two infinite linear orderings.

AprpLicAaTION 34. Let T, and T, be the theories of two infinite linear
orderings. Then the model companion of T; x T, is the theory of any subset
of Q xQ which is dense in Q xQ, without first or last element, and is such
that whenever x and .y are different elements of the subset, every coordinate
of x is different from the corresponding coordinate of y.

Proof. By Lemma 3.3, (T; x TL)f = (Tf x TH)f. But Tf = TF = Th(Q).
Therefore, (T; x T5)F is (Th(Q xQ))F and in [13] the model companion of
Th(Q xQ) is shown to be the theory of the desired subset of Q xQ.

The result of Lemma 1.1 will supply an easy proof of preservation of w-
categoricity under direct powers.

LEmMmA 3.5. If T, is w-categorical, then T, x T, is also w-categorical.
Proof. By Lemma 1.1, for any two formulas ¢, ¥ of L(x),

(2 ixThikFe—y iff T} o <y

Suppose T; x T, is not w-categorical. Then by a theorem of Ryll-Nardzewski
(see [19]) there is a natural number n such that it is possible to find an
infinite number of inequivalent formulas with at most x,, ..., x, as their frece
variables under T, x T;. Let ¢4, ..., @, ... be this infinite list and suppose,
for some i, j, i #j and T, |- ¢; <> ¢j. This by (2) implies

Ty xTi - @i < 9;.
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Thus ¢}, ..., ¢, ... is a list of an infinite number of inequivalent formulas
under T; with at most x,, y,, ..., X,, V. as their free variables, and this is a
contradiction to the w-categoricity of T.

The next result characterizes when T is a theory of some direct power of
order 2 of seme structure.

LEMMA 3.6. Let T be a complete theory. Then T = Th(A x A) for some A
iff T'=\¢": €T is consistent.

Proof. (=) Suppose T =Th(4 xA4). Then by Corollary 1.2 for any
@' €T, ¢’ is true in A iff ¢ is true in 4 x A. Hence all elements of T’ are true
in A, and thus T’ is consistent.

(<) Suppose T’ is consistent, and let A be any model of T". Since, for
each ¢ €T, ¢’ €T’ and, by Lemma 1.1, it follows that 4 x 4 is a model of T.
Finally, since T is complete, T= Th(4 x A).

It should be noted that one can find many theories which satisfy the
hypothesis of Lemma 3.6. One such example is in [24], which shows that
there are complete theories T such that T’ has several models which are not
elementarily equivalent.

4. Final remarks. From the examples which have been looked at through-
out this study it is observed that if A is n-model complete, then 4 xA4 is
(n+ 1)-model complete. It seems unlikely that there is an example such that
A is n-model complete and 4 x A is not k-model complete for all k. This
motivates the following question:

QuesTioN. Is there any w-categorical theory which for all n is not IT,-
axiomatizable? (P 1362)
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