ON MODELS OF FINITE DIRECT PRODUCTS OF THEORIES

BY

SIDKAZEM TAGHVA (LAS VEGAS, NEVADA)

0. Introduction. Let A and B be structures for the language L, and let T_1 and T_2 denote Th(A) and Th(B), respectively. In this paper it will be shown that the models of $T_1 \times T_2 = Th(A \times B)$ can always be elementarily embedded in the direct product of models of T_1 and T_2 . Also, a relationship between the forcing companion of $T_1 \times T_2$, T_1 , and T_2 will be given; and as an application, the model companion of the finite direct product of the theories of linear orderings will be found. Furthermore, given an arbitrary theory T, a characterization of precisely when T is the direct power of another theory is given.

Many of the results contained here are in the author's dissertation [21]. Our notation will be as in [4] with the exception that we use |A| to denote the universe of the structure A, and we assume familiarity with [16].

1. Preliminaries. In this section we introduce some basic definitions and ideas which will be used throughout the remaining parts of this paper.

Let x_0, \ldots, x_n, \ldots be a list of variables for the language $L(\bar{x})$ and $x_0, y_0, \ldots, x_n, y_n, \ldots$ be a list of variables for the language $L(\bar{x}, \bar{y})$. Then Weinstein in [23] associates with each formula φ of $L(\bar{x})$ a formula φ' of $L(\bar{x}, \bar{y})$ and uses φ' to characterize those sentences which are preserved under direct power. Here φ' will be used to develop a connection between the relations in T_1 and $T_1 \times T_1$.

DEFINITION 1.1. Let φ be a formula of $L(\bar{x})$. Then a formula φ' of $L(\bar{x}, \bar{y})$ is defined inductively as follows:

(1) For atomic $R(t_1, ..., t_n)$ or $t_1 = t_2, \varphi'$ is

$$R(t_1, ..., t_n) \wedge R(t'_1, ..., t'_n)$$
 or $t_1 = t_2 \wedge t'_1 = t'_2$,

respectively, where t'_i for each i is the resulting of replacing each variable x_j in t_i with y_j .

- (2) If φ is $\sim \varphi_1$, then φ' is $\sim \varphi'_1$.
- (3) If φ is $(\varphi_1 \to \varphi_2)$, then φ' is $(\varphi'_1 \to \varphi'_2)$.
- (4) If φ is $\forall x_i \varphi_1$, then φ' is $\forall x_i \forall y_i \varphi'_1$.

The following lemma states that satisfaction in $A \times A$ is effectively reducible to satisfaction in A by means of φ' .

LEMMA 1.1. Let $\varphi(x_1, ..., x_n)$ be a formula of $L(\bar{x})$ and $(a_{01}, a_{11}), ..., (a_{0n}, a_{1n})$ be in $|A \times A|$. Then

$$A \times A \models \varphi[(a_{01}, a_{11}), ..., (a_{0n}, a_{1n})]$$
 iff $A \models \varphi'[a_{01}, a_{11}, ..., a_{0n}, a_{1n}]$.

Proof. By induction on the complexity of φ .

Corollary 1.2. Let φ be a sentence of $L(\bar{x})$. Then φ is true in $A \times A$ iff φ' is true in A.

The following definition and result are due to Galvin [7].

DEFINITION 1.2. Let $x_1, ..., x_n$ be distinct variables. An autonomous system is a triple (S, π, ϱ) satisfying the following conditions:

- (1) S is a finite set of formulas with free variables among $x_1, ..., x_n$.
- (2) π is a binary operation over S.
- (3) ϱ is a function over $S \times S$ whose values are sentences in the language of Boolean algebras.
- (4) For each structure A and elements $a_1, \ldots, a_n \in |A|$ there is exactly one $\varphi \in S$ such that

$$A \models \varphi [a_1, ..., a_n].$$

(5) If $\varphi, \psi \in S$ and

$$A \models \varphi[a_1, ..., a_n]$$
 and $B \models \psi[b_1, ..., b_n]$,

then

$$A \times B \models \pi(\varphi, \psi)[(a_1, b_1), \ldots, (a_n, b_n)].$$

(6) Let $\varphi, \psi \in S$ and $f_1, ..., f_n \in |A|^I$ be such that, for each $i \in I$,

$$A \models \varphi [f_1(i), \ldots, f_n(i)];$$

then

$$A_D^I \models \psi [f_1/D, \ldots, f_n/D]$$
 iff $2_D^I \models \varrho(\varphi, \psi)$.

Lemma 1.3. For each formula φ with the free variables x_1, \ldots, x_n there is an effective procedure by which one can find an autonomous system $\langle S, \pi, \varrho \rangle$ and a subset S_1 of S such that

$$\vdash \varphi \leftrightarrow \bigvee \{\varphi \colon \varphi \in S_1\}.$$

2. Elementary embedding. Waszkiewicz and Węglorz prove in [22] that if A and B are countable saturated structures, then $A \times B$ is also a countable saturated structure. Also, in [24] it is shown, as a corollary, that if A and B are countable saturated models of T_1 and T_2 , respectively, then any countable model of $T_1 \times T_2$ can be elementarily embedded in $A \times B$. The next two

results will generalize this latter result and state that for any model M of $T_1 \times T_2$ there exist two models A_1 and B_1 of T_1 and T_2 , respectively, such that M is elementarily embedded into $A_1 \times B_1$.

THEOREM 2.1. If M is a model of $T_1 \times T_1$, then there exists a model A of T_1 such that M is elementarily embedded into $A_1 \times A_1$.

Proof. Let Γ_M be the elementary diagram of M and suppose for a contradiction that Γ_M' is not consistent with T_1 . Then there exists a finite set of sentences $\{\varphi_1, \ldots, \varphi_n\}$ of Γ_M such that $T_1 \vdash \sim \psi'$, where ψ is $\varphi_1 \land \ldots \land \varphi_n$. Assume $\overline{m}_1, \ldots, \overline{m}_s$ are the only new constants in ψ ; then $\overline{m}_{01}, \overline{m}_{11}, \ldots, \overline{m}_{0s}, \overline{m}_{1s}$ are the new constants in ψ' . Let $x_1, y_1, \ldots, x_s, y_s$ be appropriate variables substituted in ψ' for $\overline{m}_{01}, \overline{m}_{11}, \ldots, \overline{m}_{0s}, \overline{m}_{1s}$, respectively. Then, since $\overline{m}_{01}, \ldots, \overline{m}_{1s}$ do not occur in the sentences of T_1 , we have

$$T_1 \vdash \forall x_1 \ \forall y_1 \ldots \forall x_s \ \forall y_s \ \sim \psi \begin{pmatrix} \bar{m}_{01}, \ldots, \bar{m}_{1s} \\ x_1, \ldots, y_s \end{pmatrix}.$$

Hence this new sentence is true in any model A of T_1 and, by Corollary 1.2, $\forall x_1 \dots \forall x_s \sim \psi$ is true in any model of $T_1 \times T_1$, so it is true in M. Let m_1, \dots, m_s be the interpretation of $\bar{m}_1, \dots, \bar{m}_s$ in M. Then M satisfies $\sim \psi$ with m_1, \dots, m_s , but this means that $\sim \varphi_i \begin{pmatrix} x_1, \dots, x_s \\ \bar{m}_1, \dots, \bar{m}_s \end{pmatrix}$ for some i is in the elementary diagram Γ_M , and this is a contradiction to the fact that $\varphi_i \begin{pmatrix} x_1, \dots, x_s \\ \bar{m}_1, \dots, \bar{m}_s \end{pmatrix}$ in Γ_M . This shows that Γ_M is consistent with T_1 . Let A be a model of $\Gamma'_M \cup T_1$ and define

$$f: |M| \rightarrow |A_1 \times A_1|$$

by

$$f(m) = (\bar{m}_0^{A_1}, \, \bar{m}_1^{A_1}).$$

Suppose $\varphi(x_1, ..., x_n)$ is satisfied with $m_1, ..., m_n$ in M, since $\varphi\begin{pmatrix} x_1, ..., x_n \\ \bar{m}_1, ..., \bar{m}_n \end{pmatrix}$ is in Γ_M . Then, clearly, $\varphi'(x_1, y_1, ..., x_n, y_n)$ is satisfied in A_1 with $\bar{m}_{01}^{A_1}, \bar{m}_{11}^{A_1}, ..., \bar{m}_{0n}^{A_1}, \bar{m}_{1n}^{A_1}$. This shows by Lemma 1.1 that φ is satisfied in $A_1 \times A_1$ with $f(m_1), ..., f(m_n)$. Hence f is an elementary embedding of M into $A_1 \times A_1$.

The next result generalizes Theorem 2.1 to direct product, and its proof uses Waszkiewicz and Węglorz's ideas in [22].

THEOREM 2.2. If M is a model of $T_1 \times T_2$, then there exist models A_1 and B_1 of T_1 and T_2 , respectively, such that M is elementarily embedded into $A_1 \times B_1$.

Proof. Let Γ_M be the elementary diagram of M and let φ be an element of Γ_M . Suppose $\bar{m}_1, \ldots, \bar{m}_n$ are the only new constants in φ . Then replace each of these new constants with a new appropriate variable $x_{\bar{m}_1}, \ldots, x_{\bar{m}_n}$. Let Σ denote the set of all formulas obtained from those by replacing the new constants from |M| occurring in each formula φ with appropriate variables x_m for $m \in |M|$, and let L denote this extended language by variables. Since M is a model of Γ_M , Σ is a maximal consistent set of formulas and induces an ultrafilter in the Boolean algebra of formulas of language L. For each element φ of L, let S_{φ} denote the autonomous set for φ and form

$$S=\prod_{\varphi\in L}S_{\varphi}.$$

Let P be any ultrafilter in the Boolean algebra of formulas of L and let

$$S_{\omega} = \{\psi_1, \ldots, \psi_n\}.$$

Suppose ψ_i for $i=1,\ldots,n$ do not belong to P. Then $\sim \psi_i$ for all $i=1,\ldots,n$ belongs to P. Since S_{φ} is an autonomous set,

$$\sim (\psi_1 \vee \ldots \vee \psi_n) = 0,$$

and therefore $0 \in P$, which is a contradiction to the fact that P is an ultrafilter. This shows that $P \cap S_{\varphi}$ is not empty, and thus P can be thought of as an element of S by defining $P(\varphi) = \psi$ iff $S_{\varphi} \cap P = \{\psi\}$. The fact that the image ψ is uniquely determined follows from the assertion that, in an autonomous set S_{φ} , $\psi_i \wedge \psi_j = 0$ for $i \neq j$. Let $Z = S \times S$ and for each ultrafilter P define

$$Z_{\varphi}^{P} = \{(\psi, \gamma) \text{ in } S_{\varphi} \times S_{\varphi} \colon \psi \times \gamma = P(\varphi)\} \quad \text{and} \quad Z^{P} = \prod_{\varphi \in L} Z_{\varphi}^{P}.$$

Define the discrete topology on S_{φ} and, by using Tychonoff's theorem, Z is compact. The following observations are made in order to complete the rest of the proof:

(1) $Z^{\mathbf{P}}$ is closed.

In order to show (1), take $x \in Z - Z^P$ and suppose x is a limit point of Z^P . Since x does not belong to Z^P , there exists at least one of its coordinates, say φ_i , such that $\psi \times \gamma \neq P(\varphi_i)$. Let

$$W = \prod_{\varphi \in L} O_{\varphi}$$
, where $O_{\varphi_i} = \{(\psi, \gamma)\}$ and $O_{\varphi} = S_{\varphi} \times S_{\varphi}$ for $\varphi \neq \varphi_i$.

Then W is open, contains x, and $W \cap Z^P$ is empty. Hence x cannot be a limit point of Z^P . Thus Z^P is closed.

(2) For any ultrafilter P which is obtained from a model M of $T_1 \times T_2$ as above, there exist ultrafilters Q_1 , Q_2 in the Boolean algebras of formulas of L induced by T_1 and T_2 , respectively, such that (Q_1, Q_2) is in Z^P .

In order to show (2), let $T_{\varphi_1,\ldots,\varphi_k}$ be the closed subset of Z^P consisting of all those (f,g) for which

$$T_1 \cup \{f(\varphi_1), \ldots, f(\varphi_k)\}\$$
 and $T_2 \cup \{g(\varphi_1), \ldots, g(\varphi_k)\}\$

are consistent. Since $\{P(\varphi_1), \ldots, P(\varphi_k)\}$ is a consistent set in $T_1 \times T_1$ and $A \times B$ is a model of $T_1 \times T_2$ for models A and B of T_1 and T_2 , respectively, then there exist $(a_1, b_1), \ldots, (a_n, b_n)$ in $|A \times B|$ such that

$$A \times B \models P(\varphi_i)[(a_1, b_1), \ldots, (a_n, b_n)]$$
 for $i = 1, \ldots, n$.

This shows that

$$A \models \psi_i[a_1, ..., a_n]$$
 and $B \models \gamma_i[b_1, ..., b_n]$

for some ψ_i , $\gamma_i \in S_{\varphi_i}$ and $\psi_i \times \gamma_i = P(\varphi_i)$. Hence $T_{\varphi_1, \dots, \varphi_k}$ is not empty. By a similar argument to (1), one can show that $T_{\varphi_1, \dots, \varphi_k}$ is closed in Z^P . Also, it is clear that

$$T_{\varphi_1,\ldots,\varphi_k} \subset T_{\varphi_1,\ldots,\varphi_{k-1}},$$

and this produces a chain of closed sets with the finite intersection property. Since Z^P is compact, the intersection over this chain is not empty, and let (f, g) be an element of this intersection. Every finite subset of

$$T_1 \cup \{f(\varphi): \varphi \in L\}$$
 or $T_2 \cup \{g(\varphi): \varphi \in L\}$

is consistent, since for any $\varphi_1, \ldots, \varphi_k$ we have $(f, g) \in T_{\varphi_1, \ldots, \varphi_k}$. By the Compactness Theorem, the sets

$$T_1 \cup \{f(\varphi) : \varphi \in L\}$$
 and $T_2 \cup \{g(\varphi) : \varphi \in L\}$

are consistent.

(3) $T_1 \cup \{f(\varphi) : \varphi \in L\}$ is complete.

In order to show (3), let φ be a formula of L and $S_1 \subset S_{\varphi}$ as in Lemma 1.3 such that

$$(1) \qquad \qquad \vdash \varphi \leftrightarrow \bigvee \ \, \{\gamma \colon \ \, \gamma \in S_1 \} \, .$$

Since $f(\varphi) \in S_{\varphi}$, either $f(\varphi) \in S_1$ or $f(\varphi) \in S_{\varphi} - S_1$.

Case 1. $f(\varphi) \in S_1$.

Take A to be any model of $T_1 \cup \{f(\varphi): \varphi \in L\}$, which means that A is a model of T_1 and there is a sequence S of elements of |A| such that, for all φ , $A \models f(\varphi)[S]$. Since $\vdash f(\varphi) \rightarrow \varphi$ by (1), it follows that $A \models \varphi[S]$. Therefore,

$$T \cup \{f(\varphi): \varphi \in L\} \models \varphi.$$

Case 2. $f(\varphi) \in S_{\varphi} - S_1$.

The analogous argument as in Case 1 shows that

$$T \cup \{f(\varphi): \varphi \in L\} \vdash \neg \varphi.$$

Let (A_1, S_1) and (B_1, S_2) be any models of

$$Th(A) \cup \{f(\varphi): \varphi \in L\}$$
 and $Th(B) \cup \{g(\varphi): \varphi \in L\}$,

respectively. Then define a function $h: |M| \rightarrow |A_1 \times B_1|$ by

$$h(m) = (S_1(x_{\bar{m}}), S_2(x_{\bar{m}})).$$

Suppose $\varphi(x_1, ..., x_n)$ is a formula of L and $m_1, ..., m_n$ a sequence of elements in M such that

$$M \models \varphi \lceil m_1, \ldots, m_n \rceil$$
.

Thus

$$\varphi\left(\begin{matrix}x_1,\ldots,x_n\\x_{\bar{m_1}},\ldots,x_{\bar{m_n}}\end{matrix}\right)\in P.$$

Clearly,

$$A_1 \models f(\varphi)[S_1(x_{\bar{m}_1}), \ldots, S_1(x_{\bar{m}_n})]$$
 and $B_1 \models g(\varphi)[S_2(x_{\bar{m}_1}), \ldots, S_2(x_{\bar{m}_n})].$

By Lemma 1.3, since $f(\varphi) \times g(\varphi) = P(\varphi)$, we have

$$A_1 \times B_1 \models \varphi[h(m_1), \ldots, h(m_n)],$$

and hence M is elementarily embedded in $A_1 \times B_1$.

3. Model completeness and direct product. In this section the concept of forcing companion T^F of the theory T is studied and it is shown that the model companion of $T_1 \times T_2$ is always the same as the model companion of $T_1^F \times T_1^F$. This is used to show that the model companion of a direct product of two infinite linear orderings is always $(Q \times Q)^F$, where Q is the theory of rational numbers with its usual ordering. Also, another proof of preservation of ω -categoricity under direct power is given. Finally, for a given theory T, a characterization of exactly when T is the direct power of another theory is given.

One can be motivated by the fact that frequently for T model complete, $T \times T$ is model complete; however, there are some simple counterexamples to this conjecture [11]. The next result does show this phenomenon occurring in some generality in the opposite direction.

LEMMA 3.1. Let T be a complete theory with model companion T^* . If $T \times T$ is model complete, then there exists a structure B such that Th(B) is model complete and $Th(B \times B) = T \times T$.

Proof. Since $T \times T$ can be taken to be Π_2 , it follows that $(T \times T)'$ is Π_2 . Also, since T^* is the model companion of T and is model complete, by a theorem of [16] we have $(T \times T)' \subset T^*$. Let B be any model of T^* . Then $Th(B \times B) = T \times T$.

Saracino in [20] proves that ω -categorical theories have ω -categorical model companions. This and Lemma 3.1 will give the following corollary:

COROLLARY 3.2. Let T be an ω -categorical complete theory. If $T \times T$ is model complete, then there exists a structure B such that Th(B) is model complete, ω -categorical, and $Th(B \times B) = T \times T$.

The next result is concerned with the relationship between the forcing companions of T_1 and T_2 and the forcing companion of $T_1 \times T_2$.

THEOREM 3.3. Let $T_1 = \text{Th}(A)$ and $T_2 = \text{Th}(B)$; then

$$(T_1 \times T_2)^F = (T_1^F \times T_2^F)^F.$$

Proof. Let M be a model of $T_1 \times T_2$. Then by Theorem 2.2 there are models A_1 and B_1 of T_1 and T_2 , respectively, such that M is elementarily embedded into $A_1 \times B_1$. Since T_1 and T_2 are mutually model consistent with T_1^F and T_2^F , respectively, A_1 and B_1 can be embedded into A' and B'. This shows that $T_1 \times T_2$ is model consistent with $T_1^F \times T_2^F$. An analogous argument shows that $T_1^F \times T_2^F$ is model consistent with $T_1 \times T_2$. Thus the result is proved.

Let T be the theory of any infinite linear ordering. Then it is observed in [20] that the model companion of T is the theory of rational numbers Q with its usual ordering. The following application of 3.3 produces the model companion of the direct product of two infinite linear orderings.

APPLICATION 3.4. Let T_1 and T_2 be the theories of two infinite linear orderings. Then the model companion of $T_1 \times T_2$ is the theory of any subset of $Q \times Q$ which is dense in $Q \times Q$, without first or last element, and is such that whenever x and y are different elements of the subset, every coordinate of x is different from the corresponding coordinate of y.

Proof. By Lemma 3.3, $(T_1 \times T_2)^F = (T_1^F \times T_2^F)^F$. But $T_1^F = T_2^F = \text{Th}(Q)$. Therefore, $(T_1 \times T_2)^F$ is $(\text{Th}(Q \times Q))^F$ and in [13] the model companion of $\text{Th}(Q \times Q)$ is shown to be the theory of the desired subset of $Q \times Q$.

The result of Lemma 1.1 will supply an easy proof of preservation of ω -categoricity under direct powers.

LEMMA 3.5. If T_1 is ω -categorical, then $T_1 \times T_1$ is also ω -categorical.

Proof. By Lemma 1.1, for any two formulas φ , ψ of $L(\bar{x})$,

$$(2) T_1 \times T_1 \vdash \varphi \leftrightarrow \psi \quad \text{iff} \quad T_1 \vdash \varphi' \leftrightarrow \psi'.$$

Suppose $T_1 \times T_1$ is not ω -categorical. Then by a theorem of Ryll-Nardzewski (see [19]) there is a natural number n such that it is possible to find an infinite number of inequivalent formulas with at most x_1, \ldots, x_n as their free variables under $T_1 \times T_1$. Let $\varphi_1, \ldots, \varphi_k, \ldots$ be this infinite list and suppose, for some $i, j, i \neq j$ and $T_1 \vdash \varphi'_i \leftrightarrow \varphi'_i$. This by (2) implies

$$T_1 \times T_1 \vdash \varphi_i \leftrightarrow \varphi_i$$
.

Thus $\varphi'_1, \ldots, \varphi'_k, \ldots$ is a list of an infinite number of inequivalent formulas under T_1 with at most $x_1, y_1, \ldots, x_n, y_n$ as their free variables, and this is a contradiction to the ω -categoricity of T.

The next result characterizes when T is a theory of some direct power of order 2 of some structure.

LEMMA 3.6. Let T be a complete theory. Then $T = \text{Th}(A \times A)$ for some A iff $T' = \{\varphi' : \varphi \in T\}$ is consistent.

Proof. (\Rightarrow) Suppose $T = \text{Th}(A \times A)$. Then by Corollary 1.2 for any $\varphi' \in T'$, φ' is true in A iff φ is true in $A \times A$. Hence all elements of T' are true in A, and thus T' is consistent.

(\Leftarrow) Suppose T' is consistent, and let A be any model of T'. Since, for each $\varphi \in T$, $\varphi' \in T'$ and, by Lemma 1.1, it follows that $A \times A$ is a model of T. Finally, since T is complete, $T = \text{Th}(A \times A)$.

It should be noted that one can find many theories which satisfy the hypothesis of Lemma 3.6. One such example is in [24], which shows that there are complete theories T such that T' has several models which are not elementarily equivalent.

4. Final remarks. From the examples which have been looked at throughout this study it is observed that if A is n-model complete, then $A \times A$ is (n+1)-model complete. It seems unlikely that there is an example such that A is n-model complete and $A \times A$ is not k-model complete for all k. This motivates the following question:

QUESTION. Is there any ω -categorical theory which for all n is not Π_n -axiomatizable? (P 1362)

REFERENCES

- [1] J. T. Baldwin and A. H. Lachlan, On universal Horn classes categorical in some infinite power, Algebra Universalis 3 (1973), pp. 98-111.
- [2] J. Barwise and A. Robinson, Completing theories by forcing, Ann. Math. Logic 2 (1970), pp. 119-142.
- [3] C. C. Chang, Omitting types of prenex formulas, J. Symbolic Logic 32 (1967), pp. 61-74.
- [4] and H. J. Keisler, Model Theory, North-Holland, Amsterdam 1973.
- [5] H. B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York London 1972.
- [6] S. Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), pp. 57-103.
- [7] F. Galvin, Horn sentences, Ann. Math. Logic 1 (1970), pp. 389-422.
- [8] H. J. Keisler, Forcing and the omitting types theorem, pp. 96-133 in: Studies in Model Theory (M. D. Morley, ed.), M.A.A., 1973.
- [9] P. Lindstrom, On model completeness, Theoria 30 (1964), pp. 183-196.
- [10] A. Macintyre, Model completeness, pp. 139-180 in: Handbook of Logic (J. Barwise, ed.), North-Holland, 1977.

- [11] Model completeness for the sheaves of structure, Fund. Math. 31 (1973), pp. 73-89.
- [12] Direct powers with distinguished diagonal, in: Conference in Mathematical Logic London 70, Springer Lecture Notes 255 (1972), pp. 178-203.
- [13] A. B. Manaster and J. B. Remmel, Partial orderings of fixed finite dimension: model companions and density, J. Symbolic Logic 46 (1981), pp. 789-802.
- [14] J. Mead and G. C. Nelson, Model companion and K-model completeness for the complete theories of Boolean algebras, ibidem 45 (1980), pp. 47-55.
- [15] A. Mostowski, On direct products of theories, ibidem 7 (1952), pp. 1-31.
- [16] A. Robinson, Infinite forcing in model theory, pp. 317-340 in: Proceedings of the Second Scandinavian Logic Symposium (J. E. Fenstad, ed.), North-Holland, Amsterdam 1971.
- [17] Complete Theories, North-Holland, Amsterdam 1956.
- [18] J. Rosenstein, ω-categoricity of linear orderings, Fund. Math. 64 (1969), pp. 1-5.
- [19] G. E. Sacks, Saturated Model Theory, W. A. Benjamin, Massachusetts 1972.
- [20] D. Saracino, Model companion for ω -categorical theories, Proc. Amer. Math. Soc. 39 (1973), pp. 591-598.
- [21] S. Taghva, Topics in model completeness of direct powers and direct products of theories, Ph. D. Dissertation, Univ. of Iowa, 1980.
- [22] J. Waszkiewicz and B. Weglorz, On W-categoricity of powers, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), pp. 195-199.
- [23] J. M. Weinstein, First order properties preserved by direct product, Ph. D. Thesis, Univ. of Wisconsin, Madison, Wisconsin.
- [24] J. Wierzejewski, On stability and products, Fund. Math. 93 (1976), pp. 81-95.

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF NEVADA, LAS VEGAS 4505 MARYLAND PARKWAY LAS VEGAS, NEVADA 89154, U.S.A.

Reçu par la Rédaction le 15.5.1983