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Introduction. In the present paper we are studying the functional
equation

(1) @ (e7) — ep(27) = h(2),
where 1 < p < ¢ are integers, ¢ is a complex constant with
(2) le] =1,
and the function k(z) is given by the power series
(3) h(z) = Za(n)z".
n=0

We shall seek the solution ¢(2) of equation (1) in the form of a power
series

o <]

(4) ¢(2) = Zc(n)z".

n=0

Equation (1) is closely related to the equation

(5) p() = g(2)e(2F),
which generalizes the equation
(6) ¢ (2?) = g(2)e(2)

studied by Ganapathy Iyer [1] and [2] (cf. also [3], p. 186-187). Equa-
tion (5) will be the subject of another publication.

In the case p = 1 the theory given in [5] (cf. also [3], Theorem 8.7)
applies to equation (1). The result may be shortly summarized that every
formal solution of (1) is actual, i.e. it has a positive radius of convergence.
In the present paper we shall show that this is also true in the general
case of arbitrary positive integers p, q. However, whereas in the case
p = 1 the verification of the existence of a formal solution of (1) involves
at most one condition, in the case p > 1 the existence of a formal solu-
tion depends on infinitely many conditions.



234 M. Kuezmun and W. Smajdor

The considerations of Section 1 have a purely formal character.
We establish necessary and sufficient conditions for the existence of
g formal solution of equation (1). In Section 2 we evaluate the radius
of convergence r of series (4) satisfying equation (1) in terms of the radius
of convergence R of series (3). In Section 3 we show that in the case where
r = 1< R, the circle |2| = 1 is the natural boundary of the function ¢(2).

We may confine ourselves to the c¢ase where the integers p, q are
relatively prime. In fact, if p = dp’, ¢ = dq¢’, (p’, ¢') = 1, then writing
@ (2) = p(2?) we reduce (1) to the equation

D (') — e (2) = h(z),
in which p’, ¢’ are relatively prime.

1. Formal solution. In the present section we do not assume the
convergence of the series considered; so they are regarded as formal
power series. We assume that 1L <p<gq, (p,q) =1.

Ingerting (3) and (4) into (1) we get

(7 2 c(u)d"— Z ec(v)2? = Z a(n)z".
=0 v=0 n=0

We must compare the coefficients of 2" in. both members of relation (7).
For » = 0 we have ¢(0)(1—¢) = a(0), whence

1—e)ta(o if ¢ 21
®) o) = { ST Be AL
arbitrary if e =1.
Moreover, we get the condition
(9) a(0) =0, whenever ¢ =1.

For n > 0 we must take into account the divisibility of » by p and q.
If p | » and ¢ | n, say » = pgk, then 2" appears in both series on the left-
hand side of (7) and consequently

(10) c(qgk)— ec(pk) = a(pqk).

If p|n, but ¢ tn, say n = pgk—ip, 0<1i< q, then 2" appears
only in the first series on the left-hand side of (7); consequently

(11) c(ghk—1i) = a(pgk—ip), 0<i<yq.
Similarly, if g |n, but p +n, say n = pgk—jq, 0 < j < p, then
(12) —eo(pk—j) = a(pgk—jq), 0<j<p.

Finally, if » + » and ¢ + n, then 2" does not appear on the left-hand
side of (7) at all. Thus we must have

(13) a(n) =0 whenever p +n and ¢ t n.
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In order to solve equation (7) we must solve the system of equations
(10), (11), (12) (k =1,2,3,...). Let us take an » > 0. It may be uni-
quely written in the form

(14) n = ¢ m, where q ¥ m.
For s =0 we have in view of (11)

¢(n) = a(pn).
Now (10) implies for arbitrary s

8+1

(15) o(n) = o(g’m) = D' & a (@' g " im).

i=1
In fact, assuming (15) true for an s, we have by (10) for n» = ¢**'m

¢(n) = e(g"'m) = a(pg"* m)+ ec(pg°m)
8+1

— a(pq‘+lm)+52 Ei—la(piqs+l—ipm)
842

= a(pg'm)+ Y £ a @i m)
i=2
8§42 . '
— 2 st—la’(piqs+2—im).
i=1
Thus (15) is generally valid.
The ¢(n) given by (15) must agree with relation (12) whenever the
latter applies. This is the case when m in (14) is not divisible by p. Then
also p +n (since (p, q) = 1), say » = pk—j, 0 < j< p, and by (12)

(16) e(n) = —eta(gn) = —ela(g®'m).
Relation (16) compared with (15) yields

41

—ela(gftim) = Z si—la(_,pi_qaﬂ—im),

i=1
or, writing s instead of s+1,

8
(17) D&t m) = 0.
i=0
Relations (9), (13) and (17) are necessary for the existence of a solu-
tion of equation (7). As we shall see, they are also sufficient. Let us note
also that (13) may be incorporated into (17) for s = 0. Thus (17) is pos-
tulated for all positive integers m such that p + m and ¢ ¥+ m, and for
s =0,1,2,..,
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THEOREM 1. Let 1 < p < q be relatively prime integers, let ¢ + 0 be
a complex constant, and let the coefficients a(n) of the formal power series (3)
Sulfil conditions (9) and (17) for all integers m mnot divisible by p, q and
Jors =0,1,2,... Then and only then equation (1) has a formal solution (4).
This solution is unique in the case ¢ # 1 and contains a parameter if e = 1,
and the coefficients c(n) are given by formulae (8) and (15).

Proof. Suppose that conditions (9) and (17) are fulfilled and that
the sequence ¢(n) is given by (8) and (15). In order to prove that series (4)
satisfies equation (1) (or, equivalently, equation (7)) we must check rela-
tions (10), (11) and (12). Let k = ¢ p'm, s >0, t >0, p + m, ¢ ¥ m. Then
by (15)

c(gh) = (¢ p'm) = ) & la(p T im

o(pk) = c(gp™* m) (P g " m),

2;'

and

8+2 s+2

¢(gk)— ec(pk) = 2 & la(pttigti im)— 2 sl a(pttig i m)

i=1 1=2
= a(p"*' ¢ 'm) = a(pqk).

The verification of (11) is straightforward, since evidently q + gk —1.
In order to check (12) write pk—j = ¢*m, s > 0, ¢ + m and obviously
also p 1+ m. Then by (15)

s$+1
c(pk—j) = Zsi“a(_piq’“‘im) = —¢& la(¢""'m) = —e ' a(pgk—jq)
i=1
in virtue of (17).
The “only then” part as well as the uniqueness statement result
from the considerations preceding the theorem.

Remark. If p = 1, then conditions (17) disappear (since there are
no m such that 1 ¢+ m) and the existence of a formal solution of (1) depends
only on condition (9). On the other hand, if p > 1, then the existence of
a formal solution of (1) depends also on.infinitely many conditions (17).
Let us note that in this case every coefficient a(n) occurs in exactly one
of relations (17).

2. Radius of convergence. Now we assume that series (3) converges
for some 2 so that it represents an analytic function. We assume also
that the conditions of Theorem 1 are fulfilled, i.e., equation (1) has a formal
solution (4). The following theorem asserts the convergence of series (4):
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THEOREM 2. Let 1 < p < q be relatively prime integers, let ¢ be a com-
plex constant fulfilling (2), and let series (3) have a positive radius of con-
vergence B > 0. If (4) is a formal solution of equation (1), then the radius
of convergence r of series (4) fulfils the relation

R? if R<1,

(18) r =
1or RT i R>1.

Proof. If the function ¢(2) is regular in the disc |2| < r, then ¢(2F)
is regular for |2| < r'/?, (29 is regular for |z < 7%, and consequently
h(2) is regular at least for |z| < min(+''?, #'/?). This means that

(19) R > min(#/?, 7).

Now we must distinguish two cases.
I. R< 1. For any y > 1/R > 1 there is a constant M > 0 such that

(20) la(n)| < My™, = =0,1,2,...

Writing » = ¢*m we have by (15), (2) and (20)

s+1 8+1

lem)| < X la@ ¢+ im)) < M YTy < M (s+1)y7m < My,
i=1 i=1

Hence

n
r~! = limsup V|e(n)| < 77,
n—00

and with y — 1/R we obtain » > R”. Now, (19) implies that » < 1, whence
min (77, 7% = #*?, Consequently (19) yields R* >r and (18) follows.

II. B > 1. Again for any y such that 1/R < y < 1 there is a constant
M > 0 such that (20) holds, and by (15), (2) and (20) we have for n = ¢’m

8+1 8+4+1

el < 3 la(r'e " im)l < M 3T < M(s41) < Mm.
i=1 i=1

Hence

r ~'= limsup V|e(n)| < 1,

n—>o

i.e,, r > 1. On the other hand, relation (19) implies in this case R?>r
so that

(21) 1<r< R,
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We shall show that in (21) only the extreme values are possible.
Let us suppose that

(22) 1<r< R4

The function ¢(2) must have a singularity at a point 2z, with |2,| = -
Let us choose a point ¢, such that {{ = 2, and a positive number 4,

(23) 0 < §d < min (Tllq sin _7;_’ rie_qplla R rl/q) .

Then the disc
D_o: |C— Col <

is contained in the sector
T
(24) K< R, largé“—argCoK?,

and consequently the function z = { is a schlicht map of D, onto a neigh-
bourhood U of 2,. Hence also { is an analytic function of z in U (a branch
of the g-th root).

Let us observe that in view of (23) we have for (eD,

(25) 1Pl < 7.
By (24) and (25) the function

¥(2) = p(L%) = e H{p((")—h(0)}

is regular in U. On the other hand, we have by (1) for those {eD, for
which |{Y < r

(&) = e H{p(l")—h(D)}-

Thus y(2) = ¢(2) for 2¢ U, |2| < r, which means that y(2) is an ana-
lytic continuation of ¢ (2) over 2,. This contradicts the supposition that 2,
is a singularity of ¢ and thus shows that (22) is impossible. Consequently
(18) follows from (21).

COROLLARY. Under the conditions of Theorem 2 every formal solution
of equation (1) is actual, i.e. has a positive radius of convergence.

Remark. Theorem 2 is an improvement on a result of Ganapathy
Iyer [2] (cf. also [3], p. 187), where for the equation

(26) ¢(2) —@(2?) = h(2)
only the inequality r > min(1, R) has been proved.
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3. Case r = 1 < R. In case R > 1 both possibilities » = 1 and » = R?
can actually happen. For the equation

22(1—2)
(2—2%)(2—2%

p(2?)—o(2®) =
3 __
we have R = V2, whereas the radius of convergence of the solution

1 2
P =0t g = ot D

n=0

is 7 = 2. Thus » = R® On the other hand, in the case of the equation

p(R)—@(2%) =2

the right-hand side is entire (B = oo), whereas the solution

(27) ple) = ot D

has the radius of convergence » = 1. In the latter case the circle |2] =1

is the natural boundary of function (27). We shall show that this is a
general situation.

THEOREM 3. Let 1 < p < q be relatively prime integers, let ¢ be a com-
plex constant fulfilling (2) and let series (3) have a radius of convergenmce
R > 1. If (4) 48 a formal solution of equation (1) and iis radius of conver-
gence is v = 1, then the circle |2] = 1 is the natural boundary of function (4),

Proof. The function ¢ (z) must have a singularity on the circle |z] = 1.
We shall show that, for every integer k > 0, @(2) has p* singularities
equidistributed on the circle C: |2| = 1. As we have just remarked, this
is certainly true for ¥ = 0. Further we proceed by induction. Let us
assume that 2;,7 = 1,...,p% k>0, are singularities of ¢(2) equidistri-
buted on C. For each % there are exactly p points {;, ¢ =1, ..., ¥
j=1,...,p, such that {§, = 2,. The points {;; are equidistributed on C,
since they are p?-th roots of the (common) value 2z, = 2P. Each of the
points {;; is a singularity of the function ¢(2”). Consequently each {;
must be a singularity of ¢(2?), since & (2) has no singularities on C. Hence
each (7. is a singularity of ¢(2). Since (p, ¢) = 1, the points [} are all
distinet and, being p%th roots of 2Z, are equidistributed on C. Thus ¢
has p**+! singularities equidistributed on C.

This implies that ¢ has a dense set of singularities on 0. Thus C is
a natural boundary of ¢, which was to be proved.
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Analogows results have been obtained by Matkowski [4] for the
equation

p(e)—g(2)e(2) = h(2),

and by Ganapathy Iyer [2] for equation (26) with the polynomial right-
hand side.
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