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1. Consider the Dirichlet series

0o

(1.1) 1(8) = Danesin, s =a+it,

n=1

A1 > Ay A4, > 0, lim 2, = oo; let o, and o, be the abcissae of convergence

n—>00

and absolute convergence of f(s). If o, = 0, = oo, f(s) represents an

entire function. Throughout this paper we assume that o, = g, = oo.

Let M(c) = max |f(oc+it)] and (o) = max |azess|. If v(o) denotes
—ooLt<o0 n=1

the value of n, for which x (o) = |ax|e**s, we call it the rank of the maximum
term. If there are more than one such values of 7, we consider as rank
the greatest of them.

J. F. Ritt ([1], p. 77) has introduced the linear order of an entire
function by defining it as the superior limit of loglog M(s)/c as & —>oo.
C. Y. Yu ([2], p. 69) has shown subsequently that if lim logn/i, = D < oo,

n—>00

then

(1.2) lim loglog M (o)/c =1i?m—z,,,10g,1ﬁ/(1og1/|a,,|)
and that "
(1.3) log (o) =logu(ay) + | Andt.

o

Further, Yu ([2], p. 73) has proved that if
(1.4) lim logn/is =0,

n—>o0

then log M (o)~Ilogu(g). From the above results it can easily be shown
that if (1.4) is true,

o =lim loglog M (¢)/o =1lim loglog u(c)/c

=Tim log A (¢)/o =1lim lﬁlogln/(logl/lanl) .
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If A =lim loglog M (o)/o, then 1 is the lower linear order of f(s) and
2 = lim loglog u(o)[e¢ = lim log A»(o})/e.
a—>a0 g—>00

In the present paper we have obtained some properties of the deriva-
tives of the maximum modulus on the lines parallel to the imaginary
axis8 and certain relations between the maximum term and its rank.
The results have been classified into two sections.

Section 1

2. Clunie ([3], p. 175) has proved the following result:

Let f(2) = D, anz® be an entire function and a be a positive number
n=1

such that (n +1/n)?| @nlan41] is ultimately a steadily increasing function of n;
then

(2.1) M(r)< (14+oQ) I'(1+a)a—*"eu(r)v(r).
We extend this result to entire functions of the kind (1.1).

THEOREM 1. Let f(s) = D ane®s (A,41 > An, In—00) and
ne=1
lim logn/logn =g ;

et a be a positive number such that {(A,41/2An)"|an/An41]} 18 ultimately a steadily
increasing function of n; then

(2.2)  M(0) <[1+o()]e*a[a™ T (a+D+1)%’—a~'I'(d+ a) Au(0).

Proof. Following Clunie, we consider a function

(2.3) Puls) = Zﬁw%

n=-1

1f f(8) satisfies the conditions stated in Theorem 1, then g,(s) is an
entire function for which all integers beyond some definite integers are
central indices. Let » = v»(o, ¢,) be the rank of the maximum term of (2.3);
then
|an| e _ |a,| s
A x

for all » and «

N

or

lan| e (ln)

la, e
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For any value of », B can be so chosen that for all n

a
e B < MR e, (T") < e W
v

and hence
M_"R < An)® e—Un—3)R 1 ,
|a,| e e=HE A, =
Hence v(o, ¢,) =v(0c— R, f) =v(— R, F,), where
Fa( = A;eun
Also, "

u(o—R, {) = e

_la,|

A

—R) Al —A. R
X laal e Y 2o
n n
<
|a'l eAV(U—R) == }:e_’vR

et = u(o, g)u(—R, F,).

Now

© d
— ¢T e Eyn(t)dt
0

Ae At

where 7 (f) denotes the number of A’s < ¢. Since
R — +
llm logn D _ +— log*n(t)

— logis d_m logt

’

we have for an arbltrary ¢ > 0 and sufficiently large 7' > 0
ood .
—ofa(t“e yn(t)dt

=—[ f n(t) {at® e~ — R°e 'Ry dt]
0

=<}

=Rf n(t)t’e”Bqt—a f n ()t e Bt
0

0
T ao
<Rf e"Rt“[n(t)_tD*"]dt_l_Rf (Drate,~IR 3,
° 0

T 00

—a f e B ) — 14 ldt—a f ghto—1-e,~iR gy

0’ 0

<O()+RI(D+a+1+eR P """ —al'(d+a—e) R4 |
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Hence
o Ina~R)
gl |anle _ R’ Ia+D+e+1)—aR " I(d+a—e)
|a,| e~ ® KeHE '

The denominator on the right-hand side is maximum for «/4,— R =0
and hence, majorizing the right-hand side by putting R = a/1,, we get

(a/A) " P a4+ D+e+1)— a(a/t) " I'(d+a—e)
et
= ¢*a e P MNa+D+e+ 1)L —a ¥ P d+a—e) i8]

Thus, making ¢—>0, we get the result.
CoroLLARY. If D =d, then

M(o) <[1+o(1)]e"a a P Dl (a+ D)u(o)i?l .

THEOREM 2. Let f(8) be an integral function as defined in (1.1) and
let u(o) and v(o) denote the maximum term and its rank. If o, < g, then

RHS. <

ev(op(oa—a1) < .“(0'22 < ey a0 .
p(ay)
Proof. We have from (1.3)

Aio(02— 0p) < log u(o)—log u(ay) < Aygp(02—0y) 5
and hence the result.

COROLLARY. If f(s) i8 not an ewponential polynomial and k > 1, then
lim p(o)/p (ko) = 0.

8. It is known [4] that

7 logu(o)

lim—=——2 <1~

o->00 o'}hv(a) = j’/Q !
where A and g are respectively the linear lower order and the linear order
of f(s). For A =0 the inequality reduces to

=—logu(o)
lim —=2——-<1.

ag—00 6}"(0‘) =
This inequality cannot be further improved because, if f(s) 48 an entire
function as defined in (1.1) and log = o(logo) for an infinite sequence
of values of o, then

m logulo) _

o—»00 Thyg)
The result follows on putting yx(o) = oAy in the following lemma of
Shah ([5], p. 80).
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LEMMA. If x(t) is a positive monotone increasing function, continuous
almost everywhere and x(t) =1 for t>1t, and if lim logy(o)/loge = q,

a—>00

then for o, < o

B (o] [29%> 1.

4. We have proved in an earlier paper [4] the following result:
For 0 < 4, ¢ < oo,

log £(0:17)
fim — (221 _ ¢
6> o A

Here we give a few applications of the above result. In what follows &
denotes a positive integer and A and A’ two positive constants:

(1) It pu(o, ) < Au(o,f)e™ for all 6> o,, then either ¢ <1 or
o =1 and lime "4, < A"~

(2) It p(o, ™) > A’'u(o, f)€*, for ¢ > a,, then either A>1 or A =1
and lime A m > A"

Let @(o) be a function, non-decreasing and positive for o > o, and
such that log®(c) =o(c). Then:

(3) If u(o,fV) > 1/®(0)-p(o,f)¢’, or in general if u(s,**?)
> 1/D(0)- u(o, f¥)e’, for a sequence of values of o6 —>oo, then o > 1. If
the hypothesis holds for all values of o > ¢, then 4 > 1.

(4) Y u(o, V) < B(o)u(o, f)¢’, or in general if pu(c, f*) <
< D(o)u(s, fP)e, for a sequence of values of ¢—>oo, then 2 < 1. If the
hypothesis is true for all values of ¢ > ¢,, then o < 1.

(1)
(5) If e°/D(0) < %’Ln—) < @(o)e’ or in general if

1 plo, f777)
(@) u(o, 1)

for ¢ > 0,, then g =1 =1.

(k+1)
yF7)

< D(o)e°,

(6) If ¢ <1, then for ¢ > g,
plo, f) > e Do) (o, [V) > ... > [B(a)e "1 u(o, /7).

(7) If 2> 1, then for ¢ > o,

k
B0 1) < a0, 1) < o < [ o, 1)

Annales Polonici Mathematici XIII 7
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(8) If A =1 and lim 4,,6-° > 1, then for o > g,

g—>00

p(o,f) < ®(o)p(o, e~ < ... <[P(0)e"Vu(o, f¥) .

(9) If o > 1, there is a sequence of numbers o tending to infinity
for which

w0, 1) < a7 0 1%) < v < || o, 199

(10) If 2 < 1, there is a sequence of numbers o tending to infinity
for which

p(a, ) > d(a) (o, f)e™° > ... > [D(a)e T ula, f?) .

Section II

5. Doetsch has shown that log M (o) is an increasing convex function
of 0. The result implies that log M (o) is differentiable almost everywhere
with an increasing derivative; the set of points where the left-hand deri-
vative is less than the right-hand derivative is of measure zero. This
enables us to write log M (o) in the following form:

(5.1) log M (o) =log M(cy)+ [ M'(t)/ M (t)dt
ao
for an arbitrary o,.
This integral representation of log M (o) helps us in deriving in-
teresting properties of log M (o). Here we prove the existence of a linear
proximate order under certain conditions. We first prove the following

lemmas:
LeMMA 1. If 0 > oy, € > 0 and f(s) is not an exponential polynomial,
then
o)l
5.2) M (o) > M) log M (o)

1+eo '

where ¢ = ¢(0) >0 as o—> oo,
Proof. Writing for the left-hand derivative of log M (o), we have

log M (¢)—log M (o)

M'(0)/ M (o) = d/dclog M (c) =

o— 0y
> log M (0)/(1+¢)o,
where g, < o and & = ¢(0) >0 as o—>oo.
LEMMA 2.
(5.3) l@ logloiM(a) _Tm log {M (;r)/M(a_)} ‘

o—00 ¢—>00
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Proof. From (5.1) we have

log M (o} < log M (0o} + (0— 0o) M'(0)[ M (0) ,
and therefore
(5.4) lim loglog M (o)/s < lim 1/o- {log M'(0)/ M (o)} .

a—>00 ag—>00
Moreover, for an arbitrary fixed £ > 0

otk
log M (s -+ k) =log M (o) + | l}‘i{—ggd@kﬂ““)

and therefore

(6.5 I 10EL08 M (04 1) Jog (M ()M ()

Combining (5.4) and (5.5) we get the result.
LEMMA 3.

. M'(0) — M)
ﬂ_h-%M(a)logM(a)< A< eslin e i (e)

This follows from the lemma of Shah already mentioned.
We now show the existence of linear proximate order for the class
of functions for which
. M(e) M'(0)
(4) i S Tog 1 (o) — 2 3 (o) log 2 (o) °

THEOREM. Corresponding to every entire function of the kind (1.1)
satisfying (A), there exists a function o(x) which satisfies the following con-
ditions:

(i) o(x) is continuous for x > x, and lim o(z) = e.
00
(ii) o(x) is differentiable almost everywhere except at the end-points of

adjacent intervals, where it possesses left-hand and right-hand deriva-
tives.

(iii) lim ¢—2e@log M (z) = 1.
(iv) lim zp'(z) = 0.
00

Proof. Consider F(x) =loglog M (z)/xz. Properties (i), (ii) and (iii)
are obviously satisfied. Differentiating with respect to z, we get
M@) 1
z)log M (z) =z

F(x) =— %loglogM(w)+ T
or

o (z) = M(x) logloi.M (m)]

M(z)log M (z)
7*
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and since M'(xz)/M (z)log M (x) and F(x) have the same limit as x tends
to infinity the result follows.

We are grateful to Dr. S. K. Bose for suggesting the problems and
for his guidance in the preparation of this paper.
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