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STIFF DERIVATIONS OF COMMUTATIVE RINGS

BY

ANDRZEJ NOWICKI (TORUN)

The paper is concerned with the study of the mapping 6 from the set of
two -sided ideals of the Ore extension § = R[t, d] of a commutative ¢ - ring
R to the set of d -ideals of R, defined by 8(A4A) = AN R. A derivation d is said
to be rigid on R if 0 is a bijection and d is said to be stiff in a d-ideal I of R
if 0~1(I)=1{SI}. If R is a non-commutative ring with no Z-torsion and
d(Z(R)) ¢ 3(R), then D. A. Jordan has shown that d is stiff in 0 (see [7], 2.1).
In [2] (§ 4.8) it is shown that if R is a Ritt algebra and there exists a central
element z of R such that d(z) is a unit, then d is rigid on R.

In this paper we define, at first, some ideal 4 = A(R, d, I) of R[t, d]
and we prove that d is stiff in I if and only if 4 =SI (Theorem 2.1).

In Section 3 we show basic properties of 4 and we prove (Theorem 3.1)
that if R is an arbitrary commutative d -ring, then the minimal polynomial of
d is of the form r,,t""+r,,_1t""-’+ ... +ryt, where p is some prime. This
theorem is well known in the case of d-fields of characteristic p > 0 (see [4],
p. 190).

Using the ideal 4, we show in Section 4 that if R is an integral domain
of characteristic 0, then d is stiff in 0 iff d # 0 (Theorem 4.1), and if R is an
integral domain of characteristic p > 0, then d is stiff in 0 iff dim¢; Ro, =
(Theorem 4.2).

In Section 5 we define some d-ideal E(I) and we prove that if R/I has
no Z -torsion, then d is stiff in I if and only if E (I) = I (Proposition 5.2). If R/I
has Z -torsion, then the condition is not sufficient in general (Example 5.1).

Moreover, the following results are proved:

(1) If R is noetherian with no Z -torsion, then d is stiff in 0 if and only if
d(R) ¢ 3(R) (Corollary 5.4). (If R is non-noetherian, see Example 5.2.)

(2) d is rigid on R if and only if R = Rd(R), where R is a Ritt algebra
(Corollary 5.5). ‘

(3) The condition d(R)nu(R) # @ is not necessary for a derivation d of
a Ritt algebra R to be rigid on R (Example 5.3).

1. Preliminaries. Throughout this paper R is a commutative ring with
identity. We say that R has no Z-torsion if for all reR and integers n we
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have nr = 0 if and only if r = 0, and we say that R is of characteristic n if the
subring generated by 1 is isomorphic to Z/(n). We denote by 3(R) the set of
all zero divisors of R, by U™'R a quotient ring of R with respect to a
multiplicative system U < R, and by u(R) the group of all units of R. If I is
an ideal of R and A is a subset of R, then we denote by (I : 4) the ideal
reR; rAcl,.

The term d -ring will refer to a ring R together with a specified additive
mapping Jd: R — R, called derivation, which satisfies the condition d(ab)
= ad(b)+d(a)b for any a, beR.

Let R be a d-ring. If R is a field, then R is called a d-field. The set
C(R, d) of all elements r of R such that d(r) = 0 is a subring of R, called the
ring of constants of R. If R is a field, then C(R, d) is a subfield of R, called
the field of constants of R. We say that R is a Ritt algebra if R contains the
field Q of rational numbers. An ideal I of R is called a d-ideal if d(I) <= I.

Throughout this paper, S is the Ore extension R[t, d] of R (see [8)]), i.e.
S is a non-commutative ring of polynomials over R in an indeterminate t
with multiplication subject to the relation rr = rt+d(r) for all reR.

If I is a d-ideal of R, then SI is an ideal of S and

SI=\r,t"+*.. +roeS:r,el for i=0,1, ..., n}

(see [6], Lemma 1.3). If A is an ideal of S, then AnR is a d -ideal of R ([6],
Lemma 1.3 (i)).

A derivation d of R is said to be rigid on R (see [2] and [7]) if the
mapping 0 from the set of ideals of S to the set of d-ideals of R, defined by
0(A) = ANR for all ideals A of S, is a bijection. If I is a d-ideal of R, then a
derivation d of R is said to be stiff in I (see [7]) if, for all ideals A4 of S,
ANnR =1 implies A = SI. It is clear that ( is rigid on R if and only if d is
stiffl in I for all d-ideals I od R.

2. Stiff derivations. Let I be a d-ideal of a d-ring R. We denote by
4(R, d, I) the set

irgt"+ .o +ryt+rgeS;r,d'(r)+ ... +ryd(r)+rorel for any reR).

This set has the following properties:

Lemma 2.1. (i) A(R, d, I) is an ideal of S.

(i) SI < A(R. d, I).

(i) If d is a derivation of R/l such that d(r+1)=d(r)+1, then in
the factor ring S'SI the ideal A(R, d, 1)/SI is equal to A(R/I, d, 0).

(iv) AR, d, )NnR =1.

Proof. (i) If M is a d-ideal of R, then M together with the
multiplication

(ryt"+ ... +rgym=r,d"(my+ ... +ryd(m+rom
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is a left S-module (see [5]). Using this fact for d -ideals I and R we infer that
ARR,d, )= feS; fRcI] and 4(R, d, ) is an ideal in §.

The proof of (ii) and (iv) is straightforward.

Property (iii) is an immediate consequence of the ring isomorphism
R[t, dVIR[t,d] = (R/D[t, d] (see [TD.

TueorrM 2.1. Let I be a d-ideal in a d-ring R. A derivation d is stiff in I
if and only if A(R, d, )= SI.

Proof. The necessity of the condition follows from (i) and (iv) of
Lemma 2.1. To prove the sufficiency we can assume, by Lemma 2.1 (iii), that
I =0. Let A(R. d, 0 =0. Suppose that there exists an ideal 4 in S such that
A#0, AnR=0. Let f()=r,t"+ ... +ry1+r, (r;eR, i=0,1,...,n,
r, # 0) be of minimal degree among the non-zero polynomials in A. Then
n>=1 and fr—rfeA for every re R. We have

-

Jr—=rf=bh,_ ;1" '+ ... +b,t+b,,

where b,_,, ..., bo€R and
bo =r,d"(r)+r,_,d" (N + ... +r d(r.

Since deg (fr—rf) < n, by the minimality of n we have fr —rf = 0. Therefore
r,d"(")+r,_ d" Y+ ... +rd(r)=0

for every reR, ie. r,t"+ ... +r,te4(R,d, 0) = 0. This contradicts the fact
that r, # 0.

3. Some properties of the ideal 4(R, d, 0). In this section, R is a d-ring

and 4 = 4(R, d, 0). It is clear that if r,t"+ ... +r,t+ryed, then
ro=r,d"()+ ... +ryd(M+r, =0.

If 4#0 and m is the least degree of non-zero polynomials in 4, then

we denote by 4, the set
™+ 1™ Y+ .. +ritedir, #0!.
LEmMA 3.1. Let f, g4,y and
f=a,t"+ ... +ay1i, g=h, 1"+ ... +h,Ar.

Then
() d*(a,)t™+ ... +d*(a,)ted for k=0,1, ...;
(2 amy = hmf:
Q3) if a,€C, then da,_,, ..., a,€C, where C = C(R, d);
4) if ra, =0 for some reR, then ra,_, = ... =ra, =0;
(5) if a,, is a unit of R, then 4 = Sf.
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Proof. (1) Since 4 is an ideal of S and feS, we have

da)t™+ ... +d(a)t =tf—fted
and, by induction,
d @) tm+ ... +d*(a))1€4.

(2) Observe that deg (a,g —b,, f) <m—1 and a,g—b, f€A4. Hence, and
by the minimality of m, a,g—b,f =0.
(3) If a,eC, then, by (1), d(@n_)t" '+ ... +d(ay)te4 and, by the
minimality of m, we have
d(a,,,_l) = ... = d(al) = 0.

(4) Since rfed and deg (rf) < m—1, we obtain ra,_, = ... =ra; =0.

(5) Clearly, Sf = 4. Let hed. There exist u, veS such that h =uf +v
and deg v < deg f = m (see [6], Lemma 3.1 (i)). But v = h—uf €4, and thus,
by the minimality of m, v =0, ie. h=uf eSf.

Lemma 3.2. Let r t™+ ... +rytedy. If m>1, then

(o

for k=2,3,....,mand 1 <i<k-—1.
Proof. Observe that if a, beR, then

m m—1

0= Z r;d'(ab) = z u;(a)d' (b),

i=1 i=1
where
n k i
u;(a) = z ( ,)rkd"_‘(a).
k=r+1 \K—i
This fact implies that

m—1

Y u(a)red.

i=1

Hence, by the minimality of m, u;(@) =0 for i=1,2,...,m—1 and any

ae R. Therefore
m k )
r.tfiea
k=|Z+l(k—') *

and, again by the minimality of m, we have
(kk i)r,( =0 fori=1,2,....,m—1and k=i+1,...,m,
ie.

.

(,:)r,=0 for k=2,3,....mand 1 <i<m-1.
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Note the following well -known result:
LemMMA 33. If m> 1, then

((m) ( m ))_{(1) if m is not a power of a prime,
17" \m=1)) "l i m=p- |

THEOREM 3.1. If A # 0 and ryt" + ... +r,t™*ed,, where n, > ... >'n,,
r;#0 for i=1, ..., k, then there exists a prime number p such that

lll uk
np=pth..,m=p* and uy, .., u>0.

Moreover, if char R =n > 0, then p|n.
Proof. If, for some i, n; is not a power of a prime number, then, by

Lemma 3.3,
B 'n, n, o
1 —a1(1)+a2(2)+ +a""_l(n,--1)

for some integers a,, a,, ..., @, _;, and hence, by Lemma 3.2, we have

= "), +ay 47 ") o

Therefore n, = py., ..., n, = p,¥, where p,, ..., p, are prime numbers. Assume
that p; # p, for some i # 1. Then

u; n; u n;\
pi'ri =(1)".' =0, p'r =(11)"1 =0

and, by Lemma 3.1 (4), p;'r; =0. Thus, if 1 = b, p\'+b,p;", we have
ri=byp'ri+b;p;'r; =0.

This contradicts the fact that r; # 0. Finally, n, = p“, ..., n, = p*, where p is
a prime.

~ Let now n be a characteristic of R. If n =0, then, clearly, pjn. If n >0
and p4n, then 1 =ap''+bn for some integers a, b and, consequently,
r.=ap'ry+bnr, =0.

LemMa 34. Let U 'R be a quotient ring of R with respect to a

multiplicative system U and let dy be a derivation of U™' R such that

r\ d(r)u—rd(u)
dU ;) = _T—
Moreover, let p be a prime number and char R = p. If

n—1

r P P+ L4 Proted,
then
(r D)+ (e /D" + ... +(ro/1)teA(U 'R, dy, 0).

The proof is straightforward.
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4. A characterization of stiff derivations in integral domain. Now we give
some necessary and sufficient conditions for a derivation d of an integral
domain to be stiff in 0.

THeEOREM 4.1. If R is an integral domain of characteristic 0, then d is stiff
in 0 if and only if d # 0. .

Proof. If d=0, then S=R[t] is a polynomial ring over R.
Consequently, 4 = A(R, d, 0) = Rt # 0, so, by Theorem 2.1, d is not stiff
in 0. Assume now that 4 #0 and d #0. Let f =a,t™+ ... +a,1€4d,. If
m > 1, then Lemma 3.2 implies that ma, =0, ie. g, = 0. Therefore, m =1,
ie. f =a,t, hence a,d(r) = 0 for any reR. Since d # 0 and R is an integral
domain, a, = 0. This contradicts the fact that f # 0.

THFOREM 4.2. Let R be an integral domain of characteristic p >0, d a
derivation of R, K the quotient field of R, and C(K) the field of constants
of K. Then d is stiff in O if and only if dim¢yg, K = .

Proof. Denote by D a derivation of K such that

‘a\ d(ayb—ad(b)
o(5)=""
Assume that dimgg, K < . If dimg,,) K =1, then d = 0 and, consequently,
A=Rt#0. Thus, by Theorem 2.1, d is not stiff in 0. Therefore, let
dim¢g, K > 1. Since D is a C(K)-linear mapping of a vector space K over
C(K), there exists a non-zero polynomial f(t)e C(K)[t] such that f(D) = 0.
Let

f()=t"+(@a,/b)t"" '+ ... +a,/b,,

where a;, b;eR for i=1,2,...,n, and let b="hb,b, ... h,. Then bf #0,
bfe A and, by Theorem 2.1, d is not stiff in 0. Assume now that d is not stiff
in 0. Then, by Theorem 2.1, 4 # 0 and, by Theorem 3.1, there exists a
polynomial f e 4, such that

FO =r™+r " '+ ... +rot, where r, #0.

Hence and from Lemma 3.4 we have feA(K, D, 0). Since f is minimal in 4,
we infer that (1/r,) f is minimal in 4(K, D, 0), and by Lemma 3.1 (3) we
obtain (1/r)) fe C(K)[t] and (1/r)) f(D) = 0. Therefore dim¢,, K < x.

5. Stiff derivations in d-rings with no Z -torsion. If I is a d-ideal of the
d-ring R, then we denote by E(I) the d-ideal (I: d(R)).

ProvrosiTioN S5.1. If d is stiff in I, then E(I) = 1.

Proof. Let be E(I). b¢1, and let W be a left ideal of S generated by the
set 'bt, bt?, br®,...). Then B= W +SI is an ideal of S such that B 2 SI,
BNR =1. Hence d is not stiff in I.
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CoroLLARY 5.1. If d is rigid on R, then Rd(R) = R.

Proof. Observe that d is rigid on R if and only if d is stiff in I for every
d-ideal I. Since Rd(R) is a d -ideal of R, by Proposition 5.1 we have E(RdR)
= RdR. Therefore '

Rd(R) = E(Rd(R)) =(Rd(R): d(R)) = R.

PrOPOSITION 5.2. Assume that a d-ring R/l has no Z -torsion. Then d is
stiff in 1 if and only if E(I) =1.

Proof. The necessity follows from Proposition 5.1. Assume now that
E(I)=1. Let A be an ideal of S such that AnR =1, A 2SI, and let f (1)
=at"+a, "'+ ... +a,, where a, a,_,, ..., a,€R, a¢l, be of minimal
degree among the polynomials in A such that a¢l. Since ANl =1, we
obtain n > 0. Then, for every re R, we have

f(@Or=rf(t)=nd(r)ar"™ ' +g(1),

where deg (g(r)) < n—1. Hence, by the minimality of n, nd(r)acl for any
reR. Since R/I has no Z-torsion, we get ad(R)c I, ie. acE(I)=1, a
contradiction.

If R/I has Z-torsion, then the condition of Proposition 5.2 is not
sufficient in general.

Example 5.1. Let R =Z,[x]/(x?), d(x) =1. Then E(0)=0 and d is
not stiff in O (since 0 # t2e€4(R, d, 0)).
CoROLLARY 5.2. Let {I;} be the set of d-ideals of a Ritt algebra R. If, for
every j, d is stiff in I;, then d is stiff in (\1;.
J

Proof. We know from Proposition 5.2 that E(I;) = I;. Then
E(NL)=(N1;:dR)=N(I;: dR)=NEUI;) =1
j j j i j
and, again by Proposition 5.2, d is stiff in () I;.
j

CoroLLARY 5.3 (Jordan [7]). Let R be a d-ring with no Z -torsion. If
d(R) ¢ 3(R), then d is stiff in O.

For*the proof apply Proposition 5.2.

COROLLARY 5.4. Let R be a noetherian d -ring with no Z -torsion. Then d
is stiff in 0 if and only if d(R) ¢ 3(R).

Proof. If d(R) ¢ 3(R), then, by Corollary 5.3, d is stiff in 0. Assume now
that d is stiff in 0 and d(R) < 3(R). Since R is a noetherian ring, we have

3(R) = ‘gl Ph

where P,, P,, ..., P, are prime ideals such that P, = (0: x;) for some x; #0
and i=1, 2, ..., n (see [1]). Since R has no Z-torsion, every ideal P; does
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not contain an integer different from 0. Therefore, by Corollary 6.3 (see
Appendix), d(R) < P; for some i, ie. x;e E(0) =0, which gives a contradic-
tion since x; # 0.

If R is a non-noetherian d-ring with no Z -torsion, then Corollary 5.4
is not true in general.

Example 5.2. Let T = K[x,, x5, ...] be a polynomial ring over a field
K of characteristic 0 and let d be a derivation of T such that d(K) = 0, d(x,)
= x, for any natural n. Then I =(x?, x3,...) is a d-ideal of T. Consider
the d-ring R = T/I. Clearly, d(R) < 3(R) and R is a non-noetherian d - ring
with no Z-torsion. But d is stiff in 0 since E(0) = 0.

COROLLARY 5.5. In a Ritt algebra the following conditions are equivalent :

(1) d is rigid on R;

(2) Rd(R) = R.

Proof. (1)=(2) by Corollary 5.1.

(2)=(1). If I is a d-ideal in R, then

I=(I: R)=(I: RA(R)) =(I: d(R)) = E(I).

Hence d is stiff in I for every d-ideal I of R and, consequently, d is rigid
on R.

CorOLLARY 5.6 ([2], § 4.8). If R is a Ritt algebra and d(R)nu(R) # Q,
then d is rigid on R.

The corollary is an immediate consequence of Corollary 5.5.

The condition d(R)~u(R) # @ from Corollary 5.6 is not necessary for a
derivation d of a Ritt algebra R to be rigid on R.

Example 53. If R=Q[x, v] and d(x) = xy+1, d(y) = y, then one can
show that d(R)nu(R) =@ and Rd(R) = R. '

CoroLLARY 5.7. If R is a Ritt algebra admitting only a finite number of
maximal ideals, then the following conditions are equivalent:

(1) d is rigid on R;

(2) u(R)nd(R) # .

Proof. (2) =(1) by Corollary 5.5.

(1)=(2). Let d(R)nu(R)=@. Then d(R)=M,u ... uM,, where
M,, ..., M, are all maximal ideals in R, and thus, by Corollary 6.3,
d(R) = M, for some i. Hence Rd(R) = M,, i.e. Rd(R)# R, which gives a
contradiction since, by Corollary 5.5, Rd(R) = R.

The next two corollaries are immediate consequences of Corollary §.5.

CoRrOLLARY 5.8. Let K be a d-field of characteristic 0. Then d is rigid on
K if and only if d #0.

CoroLLARY 5.9 ([3], p- 43). Let R be a Ritt algebra with d # 0. Then R is
a d-simple d-ring (i.e. R has no d-ideals other than 0 and R) if and only if S
is simple.
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6. Appendix. A note on a finite union of ideals. It is well known that if R
is a commutative ring with identity and A is an ideal contained in the union
of prime ideals P,, ..., P, of R, then A < P; for some i (see [1]). In this
appendix we show that if R is an algebra over the rational number field Q,
then this theorem is also true without the assumption that P,, ..., P, are
prime. We use this generalization in the proofs of Corollaries 5.4 and 5.7.

THEOREM 6.1. Let R be a non-commutative algebra over the rational
number field Q and suppose that B, A,, ..., A, are submodules of a left R -

module M. If B < |) A;, then B c A; for some i.
i=1
Proof (by induction on n). The case n =1 is trivial. Let n = 2. Suppose

that Bc A,UA, and B¢ A,, B¢ A,. Choose x,e€B\4, and x,€e€B\A,.
Then x, € A, and x,€ A,. Consider the element x, + x,. If x; +x,€A4,, then

X, = —X;+(x; +x,)€ Ay,
and if x,+x,€A,, then
x; =(x;+x;)—x,€A,.
Therefore, x, +x,¢ A, UA,, which gives a contradiction since
X;+x,EBc A, UA,.
Suppose now that the result is true for n—1, where n > 2. Assume that
Bc Ln) A; and denote by B; the set
i=1

!
AlU...UA'-_IUA,-+1U...UA,,, i=1,..., n.

If B < B, for some i, then, by induction, B = A; for some j. Now assume that
B¢ B; for i=1,...,n. Let x,eB\B;, and x,eB\B,. Then x,eA; and
x,€A,. Consider the set

T = {xl"‘xZ, xl +2x2, ceey Xy +(n—l)x2}.

If x, +kx,e€A, for some k, then kx, = (x; +kx,)—x,; €A,, hence x,e€4,. If
X, +kx,€A, for some k, then x; =(x;+kx;)—kx,€A,. Therefore, every
element of T belongs to A;u ... UA,. Since T has n—1 elements, there
exist ke (3,4, ..., n} and x;+ix,, x, +jx,€T such that i >j and x, +ix,,
x, +jx,eA,. Hence

(i—j)x; = (xy +ixz)—(x; +jx3) € A,

and therefore x, € A,. This contradicts the fact that x, ¢ A, and completes the
proof.

CoRroOLLARY 6.1 (to the proof). Let B, Ay, ..., A, be ideals of a ring R. If

(n) 1 is invertible in R and B < \J A;, then B < A; for some i.
i=1

2 -~ Colloquium Mathematicum XLVIIL1
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CoROLLARY 6.2 (to the proof for n = 2). Let B, A;, A, be subgroups of a
group G. If Bc A;UA,, then Bc A; or Bc A,.

CoroLLARY 6.3 (to the proof). Letr P,,..., P, be prime ideals in a
commutative ring R of characteristic 0 and ler B be a subgroup of an additive

n
group R contained in ) P;. If every P; does not contain an integer different
i=1

from O, then B < P; for some i.

Note also the following

Example 6.1. Let R=Z,[x, y]'A, where 4 =(x2, xy, y?), and let
x=x+A, v=y+A4. Then (X, =(X+uXuU(y) and (X, )) £ (X+)),
(X, ) < (0. (5, ) (.
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