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On density concomitants of the covariant curvature tensor
in the two- and three-dimensional Riemann space

by L. Breszk and E. STASIAK (Szczecin)

1. Introduction. One of the basic questions of the theory of geometric
objects is to determine the algebraic concomitants of a certain type
for a given object.

In the case n = 2 the scalar concomitants of the mixed tensor have
been determined by Golab [8] under the supposition that the functions
in question are of closs C*. All the scalar concomitants of the mixed tensor
in the n-dimensional space have been determined by Aczél and Hosszi [2],
while those of the twice covariant tensor in the »-dimensional space were
determined by Zajtz in [14].

By means of the analytic method Bieszk [3] has determined for
the curvature tensor concomitants being either densities or tensors of
second order in the two-dimensional space and linear concomitants being
two-times covariant tensors in the three-dimensional space.

The same analytic method, reducing the system of functional equa-
tions to the system of differential equations of the first order, has been
applied by Bieszk and Wegrzynowski in [5] and [6] to determine densities
and vector concomitants of the antisymmetric tensor and linear concomi-
tants of a tensor T, in the two-dimensional space.

Scalar concomitants of a tensor T}, without regularity assumptions
in the two-dimensional space were deftermined by Wegrzynowski in
paper [13].

A certain general and uniform method reducing the determination
of the concomitants of geometric objects to the question of determinning
certain special subgroups of the general linear group GL, was given by
Zajtz and Siwek in [12].

In this paper we shall determine by the analytic method all density
(scalar) concomitants of the covariant curvature tensor in the two- and
three-dimensional Riemann space.

Another method of solving the above-mentioned problem will be
given in a forthcoming paper by S. Topa.
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2. Density (scalar) concomitants in the two-dimensional space V,.
First of all we give some general notations. If the passage from one allow-
able coordinate system (1) to another (4’) is given by the system of
functions :

(1) E=¢"(), A=1,2,..,n, ¥ =1,2,...,%,
where
.0V (&Y
(2) | _ A7 = R
(3) J L det(4}) # 0,
then for the inverse transformation = -
@  E =,
we introduce the notation '

A" dt aw (EA’)

) | G
Between AY and A4} the followmg relatlons occur:
(6) AL — mlntt;rA‘1

In a Riemann space V, the induced connexion is given by means
of the Christoffel symbols of second- kind

(7) {a};?} g %g'yo(aagﬁg + aﬂgae - agg;:ﬁ)’

where g* is the inverse tensor to the metric tensor g,.
The curvature tensor (Riemann-Christoffel tensor) is defined as
follons:

(8) Rl = 20000} +2 {1 %}
The so-called covariant curvature tensor is defined by
dt
(9) Raﬁyé = Rgﬁ?gﬁe'

Tensor (9) has the well-known properties
1° Rapya = Ryaaﬁ’
2° Ry = — Rpapo = — Ropey-

The number N of the so-called essential components of the tensor
R,,s in space V, is defined by the formula,

(10)

n*(n®—1)

11 N =
(11) T

(see [11], 90.9).
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After having passed to the new coordinate system (A’) the tensor
R,,; has the components R, connected with R, by the formula

(12) Ra By’ e Az; ‘Ag’ A.z,’; Agr Raﬂy6 .

Let us proceed to determine the density concomitants of R, in
the two-dimensional Riemann space.
For n =2, N =1, i.e. By, has only one essential component

df

(13) ' & = Ry
For the matrix Aﬁ, we introduce the shorter notation
. Alr Azl
(14) | [pl pz] = [ i ]
: Pa DPa Ay Ag
Hence we have
(15) J = (p1Ps—P2P3)7s

and according to [11] (formula 92.1)

, at
. &' = Byyyy = (P1Ps—PaPa)*%,
or more briefly
(16) r =dJ .
We seek an algebraic concomitant H of R, which is a density

of weight (—7). :
For n = 2, H is a function of « fulfilling the equation

(7) H(z') = ¢|J|"H ()

or

(18) H[(p1ps—Peps)®] = e|J|"H (2),
where :

(19) 1 for a Weyl density,
E =
sgndJ  for an ordinary density.
Assuming that H(z) is of class C', we reduce equation (17) to an
ordinary differential one. We differentiate (18) with respect to p,, P2, Ps;s Pa
and next substitute

(20) Pr=Ps =1, DP:=p3=0.
After this operation we get four equations reducing to
(21) , 2¢H’' (r) = —rH(x),

in which there is no intervention of e.
We have to distinguish two cases, I and IIL
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I. Let us assume that » = 0.

Ia. If # =0, the problem is trivial, because R,;;, = 0 in every
coordinate system.

Ib. If z # 0, then H'(x) = 0; hence H(x) = const and in this case
only arbitrary scalars could be concomitants of the tensor R,,,,.

I1. Let us assume that r # 0.

ITa. If # = 0, then we have again the trivial case.

IIb. If # + 0, then the general solution of (21) has the form

C.lz|™™ for >0
) o _ [Cilal )
C,lw|~™* for x< 0,
where C;, O, are arbitrary constants different from zero (different or
equal).

It is easy to prove that if ¢ =1, H(z) defined by (22) fulfils (17),
while for ¢ = sgnx, formula (22) is no solution of (17) in the whole domain
but for z > 0 only.

Now we can state

THEOREM 1. In the space V , the only scalar concomitants (of the class C")
of the tensor R, are arbitrary scalars, while the only density concomitants
of the weight ( —r) are Weyl-densities of the form
(23) H(z) = Cla|~"™,
where the arbitrary constant C different from zero is given by

C, for x>0,
C, for z<O.

3. Density (scalar) concomitants in the Riemann space V. In accor-
dance with (11) (Section 2) we have for » = 3, N = 6. We introduce
the following shorter notations for the six essential components of the
tensor E,g,4:

1)

(24) 0 =

%y = Ryp1ay @3 = Rygygy  ®3 = Ragyg,
&y = R121s;, %5 = Figgs, g = Ryg09
and the shorter ones for the elements of the matrix A}:
ar ., ..

(2) [¢;] = [4;], where ¢,j =1,2,3;
(3) J = det(a,-j) % Oo

In accordance with (6) (Section 2) and (2) we have

Qyplgq — Ap3Uze Aga U3y — Ugy Qg (Agy T3p — Az Uy

(4) [Ai'] =J d13dgp — dyp U3y @33 Ug3— A13%y; A day — Gy Cye |-

A1pdg3 — G1adyg Q1309 — A1y Agg Gy Tgg — A2 Uy
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In the new coordinate system (1’) the 'coordinates zp (t=1,2,3,
4,5, 6) of the tensor R, have the following form:

B = J T [03, @1+ 033y + ]y By — 2053 A3a Ty 1 2013 A3y 5 — 20013 A3y T,
Ty = J 7 [@5 @y + G3 @y + 63, By — 295 0g3 Ty + 2012 Qg9 T — 201229, T4 ]
@3 = J 7[5, 5, + 6§y Ty + 03 Ba — 20y Gy Ty + 2041 6y T5 — 201, A ],
Ty = J 72 [ — Qay Uga®y — Gog Aoy Py — Q13 413 T+ (Ay Ugg + Gaq Bgp) Ty —
(5) — (@12 aa + @13 Og0) T5 1+ (@13 Qg3 + @13 A2) 4],
B = J 7 [@g; A3 @y + g1 A3 @a+ Gyy @130y — (Ggy Taa + Gy @g1) Ty +

+ (@13 @33+ @13 a31) B5 — (@1 Xag + @13 A21) Te]
Ty = J 72[ — a31 @3 By — Cgy Aga Ty — @1y Aya s+ (Xgy Agp + Xp2 @ay) Ty —

— (@y1 039+ 12 aq1) T5+ (ay; Gg + 0ya 02y ) Tg).

Similarly to Section 2 the sought density H is a function of z,, ..., z,4
fulfilling the functional equation:
(6) H(‘”;’-“’m;) = e|J|"H (@15 ...y Ts),

where

o 1  for a Weyl density,
£ =
sgnJ for an ordinary density.

Let us assume that H(z,,...,2,) is of class C'. For simplicity we

introduce the following notation:
at oH
[ S ami ? '

First we differentiate the functional equation (6) with respect to
the parameters a;, ¢,j =1, 2,3, and next we substitute
(9) [aii] = [51'1],
where §;; is the Kronecker delta.

Then we get a system of nine equations of the first order with one
unknown function H depending on six variables z;,,7 =1,..., 6:

(8) i=1,2,...,6.

[2m1H1+2m,H,+ +2z,H,+ xsHz+ 2¢Hy = —rH,

2a, H, + 4 20,Hy+ w,H+20,Hy+ 0oH, — —rH,

20, Hy+ 20, Hy+ x, Hy+ o5Hg+20,H, = —7H,
2weH,+ + @ H,+ + xHy =0,
(10) | 20,H,+ + weH,+ z,H, —o,
2z¢H,+ + @ Hz+ 2,Hg =0,
20,H, + + @, H,+ weH, =0,
2z5Hy+ + o Hy+ 2,He =0,
22, H,+ + oz, Hy+ + zz;Hy = 0.
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We assert that (10) is a complete system. Denoting the left-hand
sides of (10) by X,, X,, ..., X, respectively, we have

6
at .
(11) X,(H) = Y agH,, i=1,2,..,9,
k=1

where the coefficients a;, are certain simple functions of z,, ...; @,.
Let us introduce a shorter notation for Poisson brackets:

_ 6
(12) (Xi,X,->22[Xi(ajk)—xj(aimﬂk, i<jyi,j =1,2,..,9.

After a number of simple operations based on (10), (11) and (12)
we get

(X1, X,) =0, (X, Xy) =0 (X3, X5) = X,

(X4, X5) =0, (X, X,) = (X3, Xg) =0,

(X1, Xy) = — X, (Xqy X5) =0, (X_a, X’:) = X,

(X1, X5) = — X, (Xzyxe) =0, (Xay Xg) = — Xy,

(X1, Xg) = X, (X2 Xq) = Xy, (Xq,Xs) = —X,,
(13) (Xy, Xq) =0, (Xqy Xg) =0, (Xqy X5) = 0,

(X1, Xo) =_Xa’ (X, Xo) = X,, (X4, X¢) = Xp— X,

(X4, X,) =0, (X3, Xy) =0, (X4 X7) = X5,

(X4 Xg) = — X,, (X5) Xg) = X3— X, (Xoy Xo) = — X,

(X4 Xo) = 0, (Xs5y Xo) = Xu (X7, Xg) = X,

(Xsy Xo) = — X5,  (Xqy Xo) = (X2y Xy) = Xy~ Xy,

(X5, X7) =0, (XMX) (Xsy Xy} =0,

from which it follows that (10) is a complete system.

For integrating complete systems of the type (10) it is convenient
to find a so-called integrating direction ([15] or [10]).

Denoting the equations of the system (10) by (10.1)-(10.9), we shall
integrate them in the following direction: (10.7), (10.5), (10.6), (10.8),
(10.9), (10.4), (10.1), (10.2), (10.3).

To equation (10.7) corresponds the system of the ordinary equations:

dz, dx, dzg dx, dxg dre

(14) | I W R WO T
2z, 0 0 Ty Tg 0
Solving this system, we obtain
(15) H = @(»,, 2, L) Ty — By Tyy Tyg— T2Tg) = P(Y1y -+ Ys))

where pe (",
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Substituting solution (15) in equatioﬁ (10.5) we get
(16) day, _ dy, _ dy, _ dy, _ ays
0 0 0 2y Yi— Y192

Hence, by the assumption that ¥ —vy,y, # 0, we have

(17) H = [y, @y, @q, mz(mlmz + wzwg + w3w§ — Xy Xy Ly — 204 X5 2) ]

= (21 %25 %34 24),
where pe O
Substituting solution (17) in equation (10.6) we get the system of
equations

(18) = -

The solution of (18) is
(19) H = 0[x,, Tz — 037, Ty (T, 8; + B T + Ty g — B, BBy — 20,35 4) ]
= 0(uy, Uz, Uy),

where 6e C. '
Substituting solution (19) in equation (10.8) we get

(20) (Xyg—Xo5) 0, = 0,

hence, by assuming that x,z¢— 2,2, # 0, We receive

02 = 07
so
(21) H = w[®,, ©y(0, 22 + 2o @2 + B3 ¥ — 2,8y %3 — 20, T5X4) ]
= w(v,, V), weCO.
Substituting solution (21) in equation (10.9) we get

(22) dw_"’: = %1—;3

- The solution of (22) has the form
(23) H = %(2,8,03+ 20,504 — Ty 00} — 0,05 — T3 03) = %(w),

where »(w)e C.
Solution (23) can be rewritten in the form

Ty g X
(24) H =x(w) = x|z, x, T4

Ty Toq Ty

Substituting solution (23) in equation (10.4) we obtain an identity,
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and thus equation (10.4) is not independent of the proviously integrated
equations.
Substituting solution (24) in (10.1) we have

(25) 42’ (w)w = —rx(w).

Solving the homogeneous equation (25) we obtain (similarly to the
equation (21), Section 2)

(26) H = C|w|~™, r — arbitrary, w #0,
where the integration constant ¢ # 0 has the form

¢, forw=>0,

(27) =
C, forw<o,
and
Ty Ty T
(28) w = |, Ty Tgl|.

X5 Tg Ty

We verify without difficulty that solution (25) fulfils equations
(10.2) and (10.3).

We also verify that the symmetric determinant (28), formed from
the essential components (1) of the tensor E,,,, is a Weyl density of
weight (4), i.e. denoting by w’ the right-hand side of (28) forz;,,7 = 1,2,...,6
of the form (5) we obtain (after tedious calculations)

(29) w = J 4w,

The results of Section 3 can now be formulated as follows:

THEOREM 2. In the space Vg each scalar concomitant H (xy, ..., T¢)
(of class C') of the curvature tensor R, is a sonstant function H (@,, ..., @)
= C, while every density concomitant of weight (—r) is a Weyl density of
the form

(30) H(@yy ..., ) =Clw|™™, € %0, w #0,

where w is defined by (28) and C by (27).

Remark 1. The above considerations have only been based on the
symmetry and antisymmetry of tensor E,, but we have ignored the fact
that R, as a curvature tensor comes from the metric tensor g,. The
whole consideration is maintained if we assume that the tensor R, has
only properties (10) and is independent of the tensor g,4, i.e. the assumption
that the space is Riemannian is not necessary.

Remark 2. The concomitant defined by formula (28) being an
algebraic concomitant of the tensor E,;,, it can be called a differential
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concomitant of the second order of the metric tensor g,, (because R,
are expressed bY §.sy 0,945, 0,59.5)- However, there are other algebraic
concomitants of the tensor g, which are densities. The simplest of those
is g = det(g,5), another one (for » = 3) is a symmetric determinant of
the third order formed from the essential components of the tensor

(31)

dat
Gapys = 291ai1 Ip100

i.e. from the minors of the second order of det(g,;). The tensor’@,,, of
the form (31) is the so-called induced metric tensor of the bivector space
V2, occurring in paper [8].
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