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A CRITICAL GROWTH RATE FOR HARMONIC' AND
SUBHARMONIC FUNCTIONS IN THE OPEN BALL IN R"

BY

KRZYSZTOF SAMOTIJ (WROCLAW)

1. Introduction and main results. This paper presents certain technique of
investigation of properties of harmonic or subharmonic functions h in the
open unit ball in R" (n > 2) that have restricted growth in the sense that

sup {h(x)| |x} =r} < Ck(r) (C =const) for some fixed function k.

We assume that k is defined in [0, 1) and continuous, positive, nondecreasing
and unbounded therein.

In the following B, = {xeR"| |x| < 1} (|x| denotes the Euclidean norm
.of x), n is always an integer greater than or equal to 2. P, denotes the
Poisson kernel:

—|x|?

1
Pn(x’ _V) =

-, Xl <1, yl=1.
|x—yl

Here are the main results of the paper.

1 k t/n
THeOREM 1. Let | (T(L:-) dr = +o0 and let M >0, e€(0, 1), ec 0B, be
a\1-
arbitrary. Then there exists a nonnegative, continuous function h in B, that is
harmonic in B, and satisfies the following conditions:

(a) |h(x)—MP,(x, e)| <&, whenever |x] < 1—¢
and _

(b) h(x)—MP,(x, e) < ek(|x]), for every xeB,.

Since every nonpositive harmonic function h in B, can be expressed in
the form:

h(x)= I [—Pn(x’ y)]v(dy)a XEB,,,

A
B,

where v is some nonnegative Borel measure on 0B,, the following corollary
easily follows.
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1—r

harmonic function in B,, then for every &£€(0, 1) there exists a continuous
function h in B, that is harmonic in B, and satisfies the following conditions:

(@) [h(x)+ux)| <e. if Ixl <1—¢,
and

(b) h(x)+u(x) < e-k(|x|), whenever xeB,.

Theorem 2 says a little more than a converse to Theorem 1. Theorem 2’
is a “subharmonic” version of Theorem 2.

1 1/n
THeOREM 2 (THEOREM 2). If | (k(r)) dr < + o0, then

1 1/n
COROLLARY. If j(k(r)) dr=+00 and u is a bounded from above
0

(a) for every C >0
lim sup {h(0)—MP,(0, e)| h (sub-)harmonic in B,, h(x) < C'k(|x|)

M-+ o ee?B,,.C'>0

and h(x)—MP,(x, e) < Ck(|x|) for every xeB,} = — 0,

(b) for every C >0 and M >0
lim  sup {h(0Q)—MP,(0, )| h (sub-)harmonic in B,, h(x)—MP,(x, e) <¢

e—0+ €€tByC’ >0
if Ixl] <1—¢, h(x)—MP,(x, e) < Ck(|x]) and h(x) < C'k(|x|]) for all xeB,}
= —M.
From the celebrated Riesz’s representation theorem for subharmonic
functions it follows that for every function v (v # — o) subharmonic in B,:
Bj (1—|x]) u(dx) < o0

(Where u = Av) iff v has a harmonic majorant. Theorem 3 says that if v is a
subharmonic function in B,, v # —oo and

(max({O} U o)l Ix] = ’}))mdr < 4,

1—r

© ey

then

JA=Ixhp(dx) <+ (u=4v)

D
for every region D c B, that touches 0B, nontangentially. Theorem 3 says
also that the condition

: (max({O} o) 1 = r}))""dr <+

I 1-r

0
cannot be relaxed.
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Tueorem 3. (a) If j’(k()) dr<4+o0 and v#0 is a function

subharmonic in B, such that v(x) < k(|x|) for every xeB,, then for every a >0
and ee 0B,:

J (I=|x)pdx) < +oo,
G(e,a)
where G(e, a) = {|x|e B,| 1—|x| > ap(x, e)} and u= A4v, ¢(x,e) defined in
part 2.

() If | (k( )> dr = + 00, then for every ec B, there exists a function

subharmomc in B, such that v(x) < k(|x|) for every xeB,, and

[ (1=Ix)pu(dx) = o0
(0,e)
where u = Av and (0, e) = (te] te(0, 1)}, and v is harmonic in B,\(O, e). v can
be chosen in such a manner that Av is a discrete measure with all its atoms
having masses of integer multiplicities of any prescribed positive number.

For n=2 these theorems are closely related to the problem of
description of closed ideals in topological algebras

A (k) = {f| f holomorphic function in {ze () |z| <1},

|f (@) < Crexp(ask(iz)))}

(for topology on A (k) see [5] or [7]). To each theorem proved here there
corresponds, via the correspondence f — log|f]|, a theorem about A (k).

Theorem 1 implies, by a standard argument, that if j 1(—)dr = o0, then
for every nonvanishing, bounded function f € A (k) there exists a sequence of
polynomials {W,} such that W,f tends to fo =1 in A, (k), as n — co. In fact,
the convergence implied by Theorem 1 is stronger than that. This result is

related to Apresjan’s result from [1] saying that, under some regularity

k(r)

1 dr = + o0 implies that every

1
conditions imposed on k, the condition |
0

closed ideal in A (k) is local.

k(r)

Theorem 2’ implies that if j' T_—dr < oo, then the closed ideal

1
generated in A (k) by the function f(z) = exp G—-—*-—i-) is not equal to the

whole of A (k). This result was, under some regularity conditions (which we
do not need in our proof), derived by Nikol'skil in [7] from a Beurling’s
result ([2]). Our proof is much simpler than that in [7].
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Theorem 3 implies a result due to Hayman and Korenblum ([3]), saying
Uk
that the condition | ")
0 1 —-r
Stolz angle in {z] |z] <1}, then } (1 —lz;l) < o, where the summation
1 [k
extends over zeros z; of f lying in S; and that if | i(—r)rdr = 00, then there
3 —
is a function f € A, (k) such that ) (1—g)) = co, where g,’s are positive zeros
of f. It seems that our proof of this result is simpler than that of [3], since it
does not use a pretty advanced conformal mapping technique employed in
[3]. Proofs presented here are elementary and they use nothing but basic
properties of Poisson kernel and of Green function of the ball. Most of them
are listed in lemmas: 2, 3, 10 and 11. Lemma 6 that relates Poisson kernel to
the function k is interesting by itself. The idea of this lemma was communica-
ted to me by Professor B. Korenblum.

dr < oc implies that if fe A, (k) and S is any

2. Notation and basic lemmas. The angle ¢(x, y) between two nonzero
elements x, yeR" is defined. as usual. to be the unique number ¢(x, y) for
(x, )
|xi Iy’
product of x and y, and |x| = /(x, x) is the Euclidean norm of x. g, denotes
the normalized surface measure on 0B,, i.e. the unique rotation invariant
Borel measure ¢ on 0B, such that 4(dB,) = 1.

For x # y the function:

which 0 < ¢(x, y) < and cose(x, y) = where (x, y) is the inner

(L x=y] 1yl

log if y#0,n=2,
|x—yl
gn(x, y) = < log (1/]x]) if y=0,n=2,
Ix—y>7"= iyl Ix=y1}>™" if y#0,n>3,
L Ix)27"—1 if y=0,n>3,

where y’ = y/ly|?, is the Green function of B,.
For k introduced in the introduction we set

ES (ﬂf)—)l/"dr.

0 1-—)‘

We list below a few elementary lemmas that we will need in the paper.
These lemmas are trivial; therefore we omit the proofs.

LeMMA 1. There are positive constants a, and b, depending only on n such
that for every nonnegative measurable function g defined in [0, nt/2] and for
every ee 0B, we have:

n/2 . "2
@ [ 9@ o< [ glo(y, )osd) <by [ glo)e™ 2dp.
o

ve'B,| o(y.e) Sm/2!
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Notice that integrals in the above lemma may have infinite values.

o(x, e)

LEMMA 2. Let ec0B, and 0 < 1—|x| < . Then

27" 1P, (x, ) < (1-|x) [@(x, ] " < 2"P,(x, ).
LEMMA 3. Let ec0B, and 0 <1—|x| < ¢(x, e)/2rn. Then
P,(x, y)o,(dy) = c,

vedBy| @(y.e) < @(x,e)}
where c, is some positive constant depending only on n.
LEMMA 4. For every a < 1/2n there exists a number d, > 0 such that for
any ee 0B,:
Ix—yl 2 d Ix_ela

whenever 1—|y| = a@(y, e) and 0 < 1 —|x| < ag(x, e)/2.

In our considerations a function that we denote by g,, is crucial. It is
defined as follows. Let for every number M > k(0)n":

M(1—-o ' .
‘PM(Q):{[ k(o) ] it O0<e<d,

0 if o=1.

A{ 1/n
¢u is a “1-17, continuous mapping from [0, 1] onto [0, [m] ] Let
om = @u'. Notice that

(%) @"k(en (@) = M(1—gy(9) for ¢e(0, x].

3. Proofs of Theorems 1, 2 and 2. We start with two lemmas that relate
the integral J,(k) to a behavior of kogy0@(-, €)

LemMma 5. If J,(k) < o, then for any M = k(0) n"

lim (1-oyu(9)"  k(em(9) =0
. e—0t

Proof. Let M > k(0)n". From the fact that k(r) tends to oo as r > 1~

and from (») it follows that g, (¢)— 1~ as ¢ - 0*. Hence

0< lim (1—ou (@) k(o (®) < lim (1—y(0)" " k(on ()

¢-'0+ ¢*0+
< lim (1-9" 'k ().
e—1"
The last limit is equal to 0 whenever J,(k) < + oo since

O<Id- 9)"_"‘(9)]”"—— Ja-n ‘/"drk(g)lf"<"_ll LIUANG
I3

-r
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Lemma 6. For any M > k(0)n", and any ec 0B,:
[ klem (o, €)))on(dy) < 26, M~ VI J (k).
Moreover, if k(r) < C(1—r)'"" for some C >0 and all re[0, 1), and
Bj' k(om(®(y, @)a,(dy) <o for same M,

then
J, (k) < 0.

Proof. The first part of the lemma is trivial if J,(k) = co. Assume then
that J,(k) < co. Then for any M > k(0)n" and any ec 0B, we have:

)
[ k(em(e (v, @) o.(dy) < 2b, | k(om(@) " 2do

0

i 1-— n/2 %2
=2, | M(l—au(¢))d(-1/¢)=zb,{_M_wl M I_d(gm))}
° 4 Y o ®
= 2”"{‘M‘"'”’"(l—ou(cp))"'lk(@u(¢))”" " mo- v } (@y/"dr}
0 emiv \1—T

< 2b, M~ VinJ (k).
The inequalities follow from Lemma 1, (»), and Lemma 5, respectively.

To prove the second part of the lemma assume that k(r) < C(1—-r)!""
for some C > 0 and

[ k(em(e(, @))oa(dy) <o for some M > k(0)n", ecdB,.
2B,

By Lemma 1 the latter implies that

"2
g k(em(@)o" 2de < .

Now, let 6€(0, n/2) be arbitrary. A similar calculation as in the first part of
the proof yields:

w2
! k(em(@) 9" 2do

. em(® i/n
= — MO [(1— gy ()" K (ope (@)] Iy 4 MO0 (ﬂ) s

em(®2) 1—r
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Hence by (»)
om(9) k (r)
L

1—r

1/n 2
) dr < MU= { k(opm(@))@" 2dp+2CH".
emin2) 0

Since gy (d) = 1~ as 6 — 07, letting 6 — 0™ in the above inequality we obtain
1 f 1/n
| (k(r) ) dr < .
ominn \1—T

And since (k(r)/(l—r))l/" is an increasing function of r:

Ja(k) = } (M)l/ndr < .

The next lemma shows how the condition k(r) < C(1—r)!"" can be
detoured.

LemMa 7. If for every re(0, 1) there is r'e(r, 1) such that k(r)=

(1=r)t=" then
(min ‘{k(’ia (1 —’)l_n})mdr = 0.
—r

O ey =

Proof. Let 0 =ro <r, <r; < ... <1 be such that k(r) =(1—-r)' ",
j=1,2,..., and limr; = 1. Let us define a function p: [0, 1) - [0, + o) by

the following form:ﬂa:

") = if re[O,r,),
POZWa-r) i relrrey), j=1,2,...

(min{k(r), (1—r)“"})"" _ min{(k(r) )"", 1 ! } > p(r) = 0,

1—r 1—r —-r

Then

since (k(r)/(l—r))”" and 1/(1—r) are both increasing functions of r.

Therefore
1 (min {k(r), (1—r)""} /n 1 ® 1=rjsy
= = -7
E‘; ( - dr (j)'p(r)dr j; 1 i—r,

But the last series is divergent, since

i l—rj+1) . (l—rj)
—— ] =1lim = 0.
jUx ( 1—r, i \1-r

Proof of Theorem 1. We will first prove the following:
Cramm. If J,(k) = o0 and M = (2n)", then for each ec 0B, and each ¢ > 0
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there exists a function h that is defined and continuous in B, and harmonic in
B,, such that

(@) |h(x)—MP,(x, e)] < & whenever |x] <1—¢
and

(b") h(x)—MP,(x, e) < (2>"* 1+ 1)k(|x)) for each xeB,.

It is easy to see that -the above claim implies Theorem 1.

Proof of the Claim. By Lemma 7, we may and do assume that
k(r) <(1—r)'~". Let M, ¢, e be as in the formulation of the Claim. Observe
that, by (s), the conditions: M > (2rn)" and k(r) <(1—r)!"" imply that
1 —oum (@) < @/2n for each pe[0, n]. Let 6 > 0 be such a number that for
each xeB, such that |[x] < 1—¢ and each yedB, such that ¢(y, e) <6 we
have

|P.(x, y)— P,(x, €)] <&/2M.
Let n > 0 be such a number that

nP,(x, e) <¢/2, whenever x| < 1—e¢.

Let us construct a sequence |¢;}2, inductively putting first ¢, =,
¢, =0, and if @o,..., ¢;_, are determined, let ¢; be such a number
that 0 < ¢; < ¢;_,/2 and |P,(x, e)— P,(x, y)| < k(0)/M for each ye B, and
xeB, such that ¢(y,e)< ¢; and ¢(x,e)> ¢;_,. Let f be a continuous
nonnegative function defined in [0, n], such that

(i) f(@) =0 if ¢ 29,
@ | fleW, e)ouidy) =M—n,

@ [ fleO, oudy) <P j=1,2, ..,
vj<ere)<e;_,
(i) £(9) < ozt k(en () for each pe(0, ).

M- 22n+ 1
Existence of such an f follows from nonintegrability of k (gp (¢ (", €))) around

e with respect to ag,. That is assured by Lemma 6.
Let v be the Poisson integral of f(¢(-, e)), ie.

[ fle(y, @) P,(x, y)o,(dy) if xeB,,
—_— ;BII
"= o x, ) if xedB,.
It is obvious that v is a nonnegative function, continuous in B, and harmonic
in B,. We will verify that v satisfies (a’) and (b').
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Check of (a'). Let us assume that |x| < 1—e. Then, by (i) and (ii),

[v(x)—P,(x, €)| = |v(x)—(M —n) P,(x, e —nP,(x, e)|
< | fle@, )P, (x, y)—P,(x, e)| a,(dy)+nP,(x, )

@(y.€)<é

& [
S(M—ﬂ)m'f“i <eE.

Check of (b). First we will show that for each xeB, such that
Ix| = om(@(x, €)) we have tv(x)—MP,(x, e) <k(0). Let |x] =gp(@(x, e),
x # e, and let jo = min |j| ¢; < @(x, e)}. Then

v(x)—M:-P,(x, e)

= .[ f(‘p(y’ e))Pu(x’ y)a,,(dy)—(n/2) Pn(xa e)

o(y.e) 2 p(x.e)f2

+ I f((P(y, e))P,,(x, y) an(dy)—("/z) Pu(xa e)

@jo+1 Soly.e) So(x.)/2

+ j f((P(y, e))Pn(x) y)a,,(dy)—(M—r]) Pn(x’ e)

0<o(y.e)Soj,+1

= A1+A2+A3.

But by (iv), (), and Lemma 2,
A, <sup {f(e(y, o) oy, &) = o(x, €)/2}—(1/2) P,(x, )

< gy K (QM (""’;’ e’))—(n/z) P,(x, ¢)

n 1—oum(e(x,e)
S22 [o(x, o))"

—(n/2) P,(x, e) < 0.

Also, by (iii),

A; < | S (@(y, e)a,(dy)

Pjo+1Selne)<o(x.e)/2

xmax {P,(x, y)| ye0B,, ¢(y, €) < @(x, €)/2} —(n/2) P,(x, e)
< f f(@(y, e)a,(dy)-2"P,(x, &) —(n/2) Pu(x, ) < O

Pig+1Sen2)<ej,
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and

A3 < I f((P(y, e))[Pn(xa y)—Pn(xs e)]a,,(dy)

0sere)<ej,+1

- _‘. f((P(y’ e))a,,(dy)-P,,(x, e)

@(y,e) >¢jo+ 1
< sup {P,(w, y)—P,(w, €)l ye0B,, ¢(y, &) < ¢;+1, weB,, (W, ¢) > ;]
X [ fle®, &)o.(dy)

o)<+ 1

k(0)
< V(M—n) < k(0).

Hence for each x s e such that |x| = gy (¢ (x, €)) we have
v(x)—MP,(x, e) < k(0).
Since v(x)— MP,(x, e) is a bounded from above continuous function of x
in {xeR" |x| <eom(@(x, e)}\le}, this and the maximum principle give:
v(x)— MP,(x, ) < k(0) < k(|x]) < (2*"* '+ 1)k (|x)),
whenever |x| < gy (@ (x, €)), x #e.

It remains to show that v(x)—MP,(x, e) < (2>"*!'+1)k(]x|), whenever
1> |x| = op(@(x, €). Let then x be such that 1 > |x| > gy (¢(x, €)). Then we
have

U(X)—MP,,(X, (:‘) < U(X)
( [ + [ )f(e(, e)P.(x, y)o.(dy)

o(y,e) 2 p(x,e)/2 o(y,e) <o(x,e)/2

<max {f(o(y, 9) @y, &) = o(x, )/2}
+(M —n)max {P,(x, y) ¢(y, &) < ¢(x, ¢)/2}

< 22,,—+nlﬁk(é’u (@ (x, €/2)+(M—1)-2"P,(x, ¢)

n
22n+l M

<@ '+ Dk(eum(o(x, @) <%+ Dk(Ix).

LEmMA 8. Let J, (k) <0, M = n"k(0), ec 0B,. Let v be a subharmonic
function in B, such that v(x) < Ck(|x]) for some constant C >0 and each
xeB,, and v(x) <0 whenever |x| = oy (@(x, €)), x # e. Then v(0) < 0.

Proof. Let the assumption of the lemma be satisfied. Let r e (gp(n/2), 1)
be arbitrary. Let w, denote the harmonic function in {xe R" |x| <r] whose
boundary values are equal to 0 in {xeR"| |x| =7, @(x, €) > @p(r)} and to

M-
< 2k (0w (@ (x, &)+ 2212 'k(ou (0 (x, ¢))
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Ck(r)in {xeR" |x| =r, @(x, &) < @p(r)}, where @y (r) is such a number that
oum(@um(r)) = r. Then from the maximum principle it follows that v(0) < w,(0).
Therefore

v(0) < w,(0) = Ck(r)o,({ye 0B, @(y, e) < oy (n)})
<C [ kien(e(y, @))a.dy).
o(y.e) S o pq(r)

By Lemma 6, the last term tends to 0, as r— 17, since @, (r)—0*, as
r—1~. Hence v(0) <O.

Theorem 2 and Theorem 2’ are an immediate consequence of the
following lemma.

Lemma 9. If J,(k) < oo, then for each M, M > (2m)" sup [k(r)(1—r)' "],

each ee 0B, and each function v subharmonic in B, such that v(x) < Ck(|x|)
and v(x)—MP,(x, e) < k(|x]) for some C >0 and all xeB,, we have the
inequality '

v(0) <

n+1
22D 5 by por- oo,

where b, and c, are constants from Lemmas 2 and 3.
Notice that, by Lemma 7, J,(k) < oo implies sup[k(r)(1—r)!""] < .

Proof. Let k, M, e, v be such as in the formulation of the lemma. Note
that the inequality M > (2m)"sup [k(r)(1—r)'~"] implies 1—p,\(9) < @/2n

for each ¢ €[0, n]. Since v(x)—MP,(x, e) < k(|x|]) for each x # e such that
Ix| = om(@(x, €)) we have

(x) < k(x)+2"" I M(1~|x]) [@(x, 1" = (2" ' + 1) k(|x]).

Let for each xeB,

n+ 1
2L 1 k(eu(0 0 0)-Patx, 3)0,(d).

Cn B,

w(x) =
If |x| = opm(@(x, €)), x #e, then, by Lemma 3, we have

2n+1 ‘l )
" inf {k(om (0, I e, d<o(x, 0} [ Pulx,y)o,(dy)

n ?(y,e) S p(x,e)

= (2" 1) k(Ix]).

w(x) =

Therefore for x as above: v(x)—w(x) < 0. Since v(x)—w(x) < v(x) < Ck(|x])
in B,, Lemma 8 implies: v(0)—w(0) < 0. But, by Lemma 6,

2n+l 1 2n+l
w0 =L [ k(ow(0(y, &))on(dy) = 22

Cp Cn

-2b, M®=DIn J (k).
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4. Proof of Theorem 3. Before we start the proof we give two lemmas
that we will need in the proof.

LemMAa 10. For each x, yeB,, x # y:
(1 =[x (X =IyD)

"

gn(x, y) < 4m,

where

Proof. Trivial
LemMMa 11. Let e€ 0B, and xeB,. Then

lim (1=1y1%)7" gu(x, y) = (my/2) P, (x, e),

y e
yeB,,

where m,, is the constant from Lemma 10. The convergence is uniform on sets of
the form B,\V, for each neighborhood V of e.

Proof. We skip the proof, since it is easy and the lemma itself is well
known.

Proof of part (a) of Theorem 3. Let J,(k) < oc and let t be as in the

formulation of the part (a) of Theorem 3.
Suppose that

{ (1=Iyhu(dy) =00 for some ecdB, and a >0 (u = Av).
G(e.x)
Since G(e, a;) = G(e, a,), if a; > a,, we may and do assume that a < 1/2n.
We assume also that v(0) # —oc. For, if this is not the case we can replace v
by v,

[ galx, y)u(dy), where y,=2n"%TI(n/2).

vy (x) =v(x)+
my,Yn Iyl <1/4

v, is subharmonic in B,, 4v, = 4v outside {y| [yl < 1/4}, v,(0) # —o0 and
v, (x) < C'k(]x]) for some constant C’' and each xeB,.
By our supposition

M(r)= | (1=IyD) u(dy)
G(e,a) niy| |yl <r)
tends to +o0 as r—17. Hence 1—gy, (@) <(2/2)¢ for each ¢e[O0, ]
whenever r is close enough to 1, say, greater than some r, < 1. In the
remaining part of the proof we assume that r > r,.
Let us define a function u, by the following formula:

| ga(x, y)u(dy), xeB,,

u,(x) =
My Vn Gle,a) n iyl Iyl <7}

~, as above. Notice that v+ u, is subharmonic in B, and v(x)+u,(x) < Ck(|x|)
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for some constant C and all xe B,. Now, let us define a harmonic function
w, in B, letting

4
w,(x) = (1+ d,.) [ k(eme (@ (v, @) Pa(x, y)on(dy), x€B,.
If 1> (x| > opmn(e(x, €) then using Lemmas 10 and 4,
4(1—|x|)(1—-
u (x) < (1—1]x])( "l}’I)”(dy)
Gle,a)n Pyl Iyl <r) Vn Ix—yl
4M(r)(1—|x]) 4
< <
dilx—elr ~ padg -

By Lemma 3, for the same x we have

w,(x) = ( d,,)k(IXI)

Hence for each such an x: v(x)+u,(x)—w,(x) < 0. Therefore, by Lemma 8
(since v(x)+u,(x) < Ck(|x}) and w,(x) =0 for each xeB,): v(0)+u,(0)
—w,(0) < 0. But since g,(0, y) = m,(1—|y|), we have u,(0) > M (r)/y, and, by
Lemma 6

w.(0) < (1+ 4 )-zcb"-M(r)"'“”"J..(k).

Tndz ) Cp

Thus

v(0)+

M(r) 2b, ( 4
d'l

)J (k) M ()"~ Dim < 0

Vn n

for each r close enough to 1. This contradicts the fact that lim M(r) = + .
r—1"

The contradiction completes the proof of part (a).

Proof of part (b) of Theorem 3. Assume J,(k) = + . Let a >0,
ee B, be arbitrary. Let, for each integer j > 1, h; be a function continuous in
B,, harmonic in B, and such that

|hj(x)— P,(x, e)l < k(0)/2*'  whenever |x| <1-1)j
and
hj(x)— P,(x, ) < k(Ix|)/2’*'  for each xeB,.

Existence of such an h; follows from Theorem 1. Let r;, r; < 1, be so close to
1 that h;(x) < 2 7k(r) for each xeB,. Existence of such an r; follows from
boundedness of h;, Now, let r}, r; < 1, be a number that is so close to 1, that
for each r such that rj <r <1 we have

2 0
—m(l——g"(x’ re)—P,(x, e)| < 2,-(,,3
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whenever |x| < max {r;, 1—1/j}. Next, let us choose a number rj such that r}
<rj <1 and 2/m,(1-r}? is an integer multiplicity of a, and define a
function v;, letting

2
vj(x) = hj(x)—mg,(x, rije) for xeB,.

Then, keeping in mind that

"2 gn(x’ r}’ e)]’

0 (x) = [hy(x) = Palx, e)]+[Pu e

we can see that
vj(x) < 277 k(042707 k(0) = 277k(0)  if  |x] < 1-1/j,
<

0, (0) <27 Tk (Ix) 427 k() < 27k (X)) if x <
and
v;(x) < hj(x) <277k (r) <277k(xl) if r;<|x <1,

Therefore the series ) v; converges uniformly on compact subsets of B,
i=1

and, as is easy to check, its sum is the function needed to complete the proof

of part (b) of Theorem 3.
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