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On the existence and uniqueness of non-negative solutions
of a certain non-linear convolution equation

by W. OKRASINSKI (Wroclaw)

Abstract. We consider some properiies of non-negative solutions % of the one-
dimensional non-linear equation

w2 = Kxu,

where the kernel K is a non-decrcasing function vanishing on the half-line (— oo, 0)
and having a jump at the origin. .

We give some theorems concerning the existence and uniqueness of non-negative
solutions whose support is bounded from the left.

In this paper we shall study the non-linear integral equation occurring
in the mathematical theory of the infiltration of a fluid from a cylindrical
reservoir into an isotropic homogeneous porous medium. It is known
(see [1], [6]) that under some simplifying assumptions of the hydrogeo-
logical kind the free surface of the percolating fluid is described by Bous-
sinesq’s non-linear differential equation. The research concerning its
approximative solutions leads in the case of radial symmetry to the one-
dimensional integral equation

T

(1) we) = [ K(@@—7)u(r)dr for »€[0,1],

r

where K is given and the unknown function # denotes the height of the
percolating fluid above the horizontal impervious base, multiplied by a posi-
tive factor. Thus from a physical point of view only non-negative solu-
tions of (1) are interesting. Equation (1) was studied in (4] with a linear
function K and in [2] with K(z) = e**(1+2ln4), A > 1. In the sequel
we shall consider non-negative solutions of (1) under fairly general assump-
tions concerning the kernel function KA.

1. Properties of non-negative solutions. We shall consider equation (1)
for all x € R. We suppose that the kernel K satisfies the following condi-
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tions:
(a) K is a non-decreasing function defined on R,
(b) K(z) = 0 for <0,
(¢) the limit lim K (z) = ¢ is a positive number.

z—>0
If u(x) = 0 for z < 0, then equation (1) can be written as
(1) u? = Kxu.

Henceforth we shall study equation (1’).

Let M Dbe the set of all measurable functions on R whose support
is bounded from the left.

LeEMMA 1. Let f and g be functions from M . If f is & non-negative
non-decreasing function and g is & non-negative locally bounded function,
then fxg is a continuous function on R.

Proof. Let the supports of f and ¢ be bounded from the left by r.
We can write

o-r
(fxg)(@) = [ fle—r)g(v)ar for all z e R.

We suppose that a sequence x, converges to x. For sufficiently large z,
we get

T,—T (¥o

f fla,—7)g(r)dr = ff(wn (r)dr  for all =,.

The function f is continuous almost e¢verywhere, because it is monotone.
Hence the sequence f(x,— 7)g(r) converges to f(xr—7)g(r) for almost
all r € [r, @,]. Since f is non-decreasing and

g(r) < L for velr, ],

we have
fl@,—7)g(r) < Lf(w,) for all v e[r, ] and all z,.
Using Lebesgue’s theorem, we geb
Zo
llmff(w —9g(dr = J fla—s)gx)dr

n—»>o r

and

[ fle—ngmdr = [ fl@—7)g()ar
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Therefore lim (fxg)(z,) = (f*g)(x) for any sequence convergent to .

n—o0o

This implies that f+g is continuous on R.

LEMMA 2. If we M, is a non-negative solution of (1), then w is a
non-decreasing function.
Proof. If », < z,, then
1'1 z
w(x,) —ui(2y) = f [K(xy—71)—K(2y—7)]06(r)d7 -+ f T, —T)U(T)dT
—20 2
and

K(z,—1)u(t)dt > 0.

K] .
S

| (E@,—v)— K (@,—7)]u(r)dz+

This implies that «(z,) > u(z,).

THEOREM 1. If u is a non-negative solution of (1') such that w e M,
then u 18 a continuous function on R.

Proof. Since by Lemma 2 % is a non-decreasing function, it is locally
bounded. Hence by Lemma 1 we infer that K =« is a continuous function.
Therefore 2 is continuous. Since % is non-negative, we infer that «
= Vu? is continuous.

For a real number 7 let @, be the set of all continuous functions f
on R such that f(z) = 0 for x < r and f(@) > 0 for # > r. We shall write

Q = UQr'

TER
THEOREM 2. If u is a non-negative solution of (1') such that we M __,
then u € Q, for some real number r.

Proof. We infer by Lemma 2 that the support of 4 is [r, + o),
where 7 is some real number. Since by Theorem 1 u is contmuous, we
find that % € Q,.

THEOREM 3. If u is a solution of (1’) such that w € Q,, then

(2) gz < fz )dr  for #>0.
0
Proof. By Lemma 2 % is a non-decreasing function. Therefore
w?(z) < u(x) fK(w—r)dr.
0
After the substitution s = z—r we have

u?(x) < u(z) fK(s)ds,

which implies the right-hand side of inequality (2).
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The function # is differentiable almost everywhere, because it is
monotone. Let # be differentiable in £ > 0 and let %, be a positive sequence
convergent to zero. Then

z+h.n

[u*(2)] = lim —U K(x+h,—7)u (r)dt—fK(m—r)u(r)dr].

n—>o

We have
z+hn

[f K(z+h,—7)u( r)dr—fK T—7T u(r)dr]

z T+khy,
=fi[1((w+hn—r)—.k:( ~r)]u(r)dr+if K(@+h,—7)u(z)dr.
(1] h" L "‘ T
From conditions (a) and (c) we get
z 1 1 z+h,
fT[K(w—{-hn—r)—K(w—t)]u('r)dr—l—h—f K(@+h,—7)u(x)dr
0 r n oz
1 z+hy,
S B
Hence we obtain
1 m+hn
w2 (@)] > g- 1imh—f u(t)dz.
n—soo Ity
Since u is continuous in x, we have (see [5])
z+hy,
lim———f w(r)dr — u(@).
n—>co n

Therefore the last inequality can be written as

2u(z)u’(x) = g-u(2),
from which we get

1
u'(z) >Eg for a.a. »> 0.

T
The inequality »(«) > [ %'(7)d is true for a non-decreasing function u
0
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such that «(0) = 0 (see [5]). Then we have

u(x) =

S8

32gdv, where f%gdr = }gw.
0

We get the left-hand side of (2).

2. Existence and uniqueness of the non-negative solution. For a func-
tion f € @ we denote by T'(f) the function

(3) T(f) = (K+f).

LeMMmA 3. If fi(x)<[f.(®) for all z<<b, then T(f,)(z)<T(f,)(x)
for all ©<b.

Proof. From conditions (a) and (¢) we infer that T is monotone.
We denote by P% the set of all functions from @, reduced to ( — oo, b]
and satisfying (2) on [0, b]. Let Px be the subset of functions from Q,
satisfying (2) on [0, + o0).
LEMMA 4. The operator T transforms P into Pl.
Proof. Let
Fla) — | 1g(z) for >0,
0 for z < 0,

and

G(z) =[B;E.K('c)d'r for x>0,
0 for ¢ < 0.
Using conditions (a)-(c), we get
T(F)(z)> F(z) and T(&)(2) <G (),
from which, by the definition of P‘k and Lemma 3, we obtain
F(z) < T(p)(x) <G(x) for ¢ cPh.

From Lemma 1 we infer that T'(¢) is a continuous function. The lemma
is proved. _

For every b > 0 there exists a number ¢ >0 such that K(c¢)/g < 2
and ¢ < b. For any f,, f, € P4 the number

sup M, where p(7) = eﬂ’f[K(o‘)—%g]dcr

0<r<b p(7) 0

and ﬂz_l_supl_@_—__g_l_,

’
Je<r<d T

§ — Annales Polonici Mathematicl XXXVI.1



66 W. Okrasinski

is positive and finite. We can define the funetion

Qb(fl;fz) = sup Ifl fz )|

for all e P%.
0<T<b p(-r) Ji, [ e Px

LEMMA 5. The function o, defines & metric in P and P% is & complete
space.

Proof. It is easy to see that p, has properties of a metric. Now we
show that P% is complete. Let f, € P% be a Cauchy sequence. Thus for
any ¢ > 0 there exists an N, such that

fm(T) = Ja(7) <e forn,m> N, and ve(0,b].
p(7)

We have

Do Sl 5 a0 for e (0, 8]
because

b

P()< M = ¢ [[K(0)—}glds  for 7€ (0,d].

Hence

|fm(T) —foul?t)| <eM for n,m>N, and 7e€(0,Dd],
which implies that there exists a function f such that f(r) = lim f,(7)

f"—>o

for 7 € (0, b]. The function f is an element of P%. If m —> oo, we obtain
1f(z) —fulo)l .

< for n > N, and v € (0, b].
p(7)

This implies that g,(f, f,) < e for n > N,. We conclude that P% is complete.
LEMMA 6. For every =0

(4) 37 [[K(s)—3glds > [ [[E(0)—}g)dods.
0 o0
Proof. Let
T T 8
W) = &7 [ (K(s)—3glds— [ [[K(0)—}gldods.
0 o0
The function 7 is absolutely continuous. Thus I’ exists almost everywhere

and I(7) =fl'(s)ds (see [5]). We have
0

U(r) = %(r[K(r)—ig}.—f [K(s)—}g]ds) for a.a. 73>0.
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From (a) we get
[ LK (s)—}g1ds < 7[K (v) — 4],

which implies that I'(r) > 0. Hence I(r) > 0 for > 0. We infer that
inequality (4) is true.

LEMMA 7. For every v e[0,Db]
(5) K(z)e "< K(c).

Proof. Since K is a non-decreasing function and g is 2 non-negative
number, we have

K(7)e=*" < K(r)< K(¢) for 7e[0,e¢].

We can write

from which we obtain

K(t)g+ 7 sup if(_'c);g_

for z € [e, b],
e<r<b T

and, by the definition of 8, we get

K(7r)<g(1+p) for z=el[e,bd].
Since the inequality

l+a<eé
is true for all z e B, we get
K(7) < ge” for rele,b],

from which it follows that

K(r)e "< K(6) for vele,b].
This implies that inequality (5) is true for all ~ € [0, b].

LeEmMA 8. For f,,f.e Pk

K (c)
29

(6) Qb(T(f2)1 T(f1))< 06(fa, f1)-

Proof. For f,, f, € P% and v € (0, b] we can write

(K *f5)(z) — (K «f1)(z)
(K +fo) (r) + (K f1)H (7) |

IT{f2)(x) = T(f)(z)| =
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Using Lemma 4, we obtain

(K *fo)(r) — (K =) (7)
(K #f2)" (7) + (K #f,)" (v)
Since the inequolity

Ifo(7) = f1(D) < 2 (7) 0y (f2) [1),

is true for all f,, f, € P% and v > 0, we have

(K=[f:—fi)(7)
gt

(B x[famfi) @) | (K2p)()
g < p oy([s, f1) for v> 0.
‘We obtain
K x
T () (1) = T () (5)] < (—‘f; ) oy 1)

From the definition of p we get

—8

(K xp)(z) = ¢ [ K(s)e™" [ (K (0)— }g)dods.
We have, by Lemma 7,
(K xp)(z) < " K(c) [ [ [K(0)—}gldods.

Using inequality (4), we obtain

(K *p)(r) < e K ()} [ [K(s)—}glds.

Q
The last inequality can be written as
(K *p)(7) < 3K () 7p(v),
from which we get
K (e)
29
This implies that inequality (6) is true.

1T (fo) (1) =T (f) (D) <

P(7)op(fe, f1) for Te(0,b].

THEOREM 4. Equation (1') has a unique solution in the set Q, satisfying

nequality (2).

Proof. Since for every b > 0 there exists a number ¢ > 0 such that
K (c)/2g < 1, by Lemma 8 the operator T is a contraction on the complete
metric space P}.. Using Banach’s theorem (see [3]), we infer that T has

one and only one fixed point in P% for every b > 0. This implies that T

has one and only one fixed point in P,..
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COROLLARY. For every real number d equation (1') has a unique solution
u in the set Q.

The proof may be obtained by translation.
LEMMA 9. The function

f K@—1 f (s)dsdt
18 differentiable for a.a. x > 0 and
fK ~7)K(7)dz a.e.

Proof. We can write

r+h—1 z+h z+h—-1

(:n-}—h jK ( f K(s ‘) +If K(T)of K (s)dsdz.

z

For (k) < h, we have

xefs | o)

Then, by Lebesgue’s theorem, we get

K(z)K(x+hy) for rel0,x].

z+h—7

lim K ( f K(s ds)dr—fK (@ —7)d.

h—»O

Since K is continuous almost everywhere, we have

z+h z+h—1

limij~ K(7) f K(s)dsdr =0 for a.a. = 0.
h»Oh 5
We obtain
lim T(‘”J“h’)z_"(x) = [E(@E@—7)dr for aa. 3> 0.
h—0 0

LEMMA 10. If
2) =} [ K(v)dr,
]

then q € Py and T (q)(x) < q(x) for all x.
Proof. We have

//\

x
f K(z
U]
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Since, by conditions (a) and (e),
} [E(dr—ige =} [ [E(r)—gldr
0 0

is a non-negative number, we have
g(z) > 39z for x> 0.
We get g € Py. Let

w(z) = ¢*(@) —[T(q)1*(w).

The funetion w(x) can be written as
w@) = ([ K@) —} [K(@—7) [ E(s)dsdr.
0 0 (1]

Since w is absolutely continuous and w(0) = 0, we have w(z) = [w’'(r)dz.
[}

By Lemma 9

From (a) we obtain w’(r) > 0. This implies that w(x) > 0. The lemma
8 proved.

THEOREM 5. If u is a solution of (1) in the set Q,, then
(7 w(@)< 3 [K(r)dr  for oll @.
0

Proof. Since by Lemma 10 for every >0
¢(®) e Py and T(g)(#) < g(x),
we have
" g) (@) < T"(g) (=)
and

T"(q) e P%, for every natural =.

Hcnee lim 77" (q)(x) exists for every z e [0, b]. Let

n—o00

u(x) = lim 77(q)(=).

Since i
" (q) (@) = (T +T")(q)(w),
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we obtain by Lebesgue’s theorem

w(x) = T(u) (o).

Therefore % is a solution of (1’) in the set @,. From Theorem 4 we infer
that equation (1’) has a unique solution % in @,. This implies that 4 = u.
Since u(x) < ¢q(#) for all z, the theorem is proved.

COROLLARY. If u is a solution of (1') belonging to Q,, then w’'(04-) = ig.

3. Regularity of solutions.

THEOREM 6. Let K™ (x) be a continuous function for £>=>0. If u is
a solution of (1') in the set Q,, then u™ () is a continuous function for z > 0.

Proof For x> 0 we have

T
[*(@)) = E(0)u(@)+ [ K (w—7)u(z)ds.
’ 0
Since % is continuous and u(x) > 0 for » > 0, we infer that
N G0
wi(@) = 2u(x)
is continuous for z > 0.

We suppose that «®(x) is continuous for # > 0 and k <'n. This
implies that

k T
[ (@)%Y = Y EO©0)u*~ V(@) + [ K @ —r)u(r)de
=0 0

is continuous for 2 > 0.
Using Leibnitz’s formula, we have

[u2(m)](k+1)_zkv(k -!-l)u(i)(m)u(kﬂ-i)(m)
u(k+1)(m) — i=1 ?

Su@) for ¢ > 0,

which implies that «®*V(z) is continuous for # > 0 and % < n. The the-
orem is proved.
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