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0. Introduction. Techniques of non-standard analysis have been used
by Machover and Hirschfeld in [4] to prove several results in the theory
of proximity and uniform spaces. Two such results which are of fundamen-
tal importance are the characterization of filters by means of nuclear
sets and the reduction of a proximity relation é on a completely regular
space X to an equivalence relation ~ on the corresponding set X in an
enlargement.

In this paper a characterization of round filters in terms of their
nuclei is obtained. The nuclei of the maximal round filters on a proximity
space (X, 6) then serve as points of the Smirnov compactification 6X
and, by this means, the Smirnov compactification may be constructed
directly from (X, d). Standard and non-standard characterizations of
proximity spaces admitting a unique compatible proximity relation are
then obtained. We also characterize, by means of maximal round filters
on (X, ¢), these points x of 6X for which every real-valued proximity
function on (X, §) has a real-valued p-continuous extension to x, i.e.,
we determine the points of the real-completion of (X, d) (see [b]).

1. Characterization of maximal round filters. Non-standard treatments
of topological spaces may be found in [4] and [7], and a non-standard
development of proximity and uniform spaces occurs in [2], [4] and [6].
In general, we follow the notation of [4], unless otherwise indicated.
For (standard) background concerning proximity spaces and round filters,
see [8]. Denote by ¢ the negation of a proximity relation 6.

A filter on a proximity space (X, §) will be denoted by #, and the
nucleus of # (see Section 5 of [4]) by nuc &. Let [«] be the monad of a point
z in X relative to the unique precompact uniformity in the proximity
class 7 (0) of 6. Then for subsets 4 and B of X, by Theorem 8.2.2 of [4],
we have A0B if and only if a, be [4] for some *points a*¢ A and b*e B.
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LEMMA 1.1. A filter F on (X, J) is round if and only if xenuc F implies
[#] < nuc £.

Proof. Necessity. Let & be a round filter with xenuc # and
y¢ nuc . Then y*¢ F for some Fe#. Since # is round, choose G ¢ # such
that @ € F. Then 2*e Gand y *¢ X — F. Now G8(X — F) implies y ¢ [z].

Sufficiency. Choose Fe#, a filter satisfying the condition. If @
is an infinitesimal *member of #, then x e G implies xe nueF. If y*eX — F,
then y¢nuc #, so that y¢ [#]. Thus, G6(X —F). Now the statement
3G[GeF and G € F] is true in *#, hence in %, so that # is round.
This completes the proof.

We can now characterize maximal round filters by means of monads.

THEOREM 1.1. Let & be a filter on (X, 6). Then the following are
equivalent:

(i) nue F = [x] for some *point r*e X.

(i1) #F i8 a maximal round filter.

Proof. (i) implies (ii). By Lemma 1.1, # is round. If # < &#,, where
&, 18 a round filter on (X, 8), then nuc #, < nue & by Theorem 5.1.3
of [4]. But &, is round, so that if yenuc #, and x ~ y, then xe nuc F,.
Since nuc #, is non-empty, we have [x] < nuc #,, hence F =F,.
Thus # is maximal.

(ii) implies (i). If # is a maximal round filter on (X, ), then xe nuc &
implies [#] < nuc # by Lemma 1.1. But, by 7.3.3 and 7.4.5 of [4], [=]
1s nuclear, hence # = fil(nuc &) < fil[z]. Since fil[z] is round and &
is maximal, we have nuc & = [x], and the proof is complete.

Theorem 1.1 shows that the nuclear sets described in Theorem 7.3.3
of [4] are precisely the nuclei of the maximal round filters on (X, 4),
where the uniformity in Theorem 7.3.3 is taken to be the unique precompact
uniformity in the proximity eclass of 6.

A collection {A,, ..., 4,} of subsets of X is a p-cover of (X, ) if
there exist sets B,,..., B, satisfying B; € A; for + =1,2,...,n and
L‘JB,- =X (see [1]).

COROLLARY 1.1. For a round filter & on (X, d), the following are
equivalent:

(i) nue F = [x] for some *point x*e X.

(ii) & is maximal.

(iii) If {A,,..., A,} i8 a p-cover of (X, ), then A;eF for some i.

Proof. The equivalence of (i) and (ii) is already established. Thus,
let {4,,...,4,} be a p-cover of X, and let # be a maximal round filter.
Since nuec # = [«] for some z*¢ X, we must have «*¢ B; for some i. Now
B; € A; implies that [z]*< A;, so that A4;e#.
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Conversely, if (iil) holds, take x ¢ nue & . Since & is round, [#] < nuc &.
If ye nue &, but y¢ [x], then there exist subsets A and B of X such that
r*e A,y*e B and AéB. Now {X - A,X - B} is a p-cover of (X, 9),
and neither X — 4 nor X — B is a member of &#, which contradicts (iii).
Hence nuc # = [z], and # is maximal. This completes the proof.

The equivalence of (ii) and (iii) was proved in [1] by standard methods.

Since [«] is nuclear for each *point of X, Theorem 1.1 provides a one-
-one correspondence between the maximal round filters on (X, J) and the
monads of *points of X. Denote the maximal round filter fil[z] by #,.
It is natural, then, to construct the Smirnov compactification 6X of
(X, 6) by taking the monads [x], z*¢ X, to serve as the points of 6X.

THEOREM 1.2 (Smirnov). A proximity space (X, 8) is p-isomorphic to
a dense p-subspace of a compact Hausdorff space 6X.

Proof. Take 60X = {[#]: #*e X}. Define basic closed sets in 60X
as follows. For each 4 < X, take [#]e 4 if and only if Be#,; whenever

A4 €B. Then X = 6X and @ — &. Suppose [#]¢ 4,Ud,. Then there exist
subsets B, and B, of X such that 4, € B,, A, € B,, [¢] *¢ B, and
[#] *¢ B,. Choose C, and C, such that A; €C, € B, and 4, € (C, € B,.
Then
[#] *< (X —C))N (X — (),
so that C,0C,¢F . But 4,04, € C,UC,, hence
[#]¢ A,ud, and A,Ud,c 4,Ud,.

If 4,04,C€ B, then 4, € B and 4, € B, and it follows that

d,04, € A UA,.

Thus the collection {4: A < X} is a base for the closed sets of a to-
pology on 6X. Define an injection ¢ of X into X by setting ¢(x) = [x].
We note that, for 4 < X, Cl,x ¢[4] = 4, so that Cl,x p[X] = X = éX.

Next we show that 6X is compact and Hausdorff. If [#] # [y] in
60X, then there are subsets A and B of X such that #*< 4,y*< B and
A6B. Choose subsets C, D, E, F of X such that E and F are disjoint,
AE€CCE and BEDCF. Since {X—C, X—D} is a p-cover of (X, 9),
Corollary 1.1 implies that (X — D)e #(,), and (X C)e #,;- Now (X C)
€E(X—A)andz*¢ X — 4 1mply that [z]¢ X — X — C. Hence [z]e 6X — (X X—0).
Similarly, [y]e 6z — (X — D). Since 6X —(X —0) and 6X —(X— D) are
disjoint, 6X is Hausdorff.

Let {4,:acI} be a collection of basic closed sets with the finite
intersectign property. If there is 4, € B, for each 1 =1,...,n, then
[#le M {4,: i =1,...,n} implies that

m{Bai: T = 1, -..,'n}Gf[z].
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Thus, the collection # = {B< X: A, € B for some ae I} generates
a round filter on (X, ) which can be embedded in some maximal round
filter #,;. Then we have [#] *< B for all Be #, so that [z]e 4, for all
ae I, and (" {4,: aeI} #O. Hence 6X is compact.

Now AdB in X if and only if there are z*< A and y *e B, where
y e [#]. This implies that [#]e ANB in 6X, so that ¢[A4] is close to ¢[B]
in 6X. Conversely, if A6B, take disjoint subsets ¢ and D of X for which
A €C and BED. Then

U{lz): [#le A} *< ¢ and U {[y]: [yle B} *< D.

But € and D are disjoint, hence ANB = @, and ¢[A] and ¢[B] are
remote. Thus ¢ is a p-isomorphism and the proof is complete.

Next, non-standard methods are used to establish the “universal
mapping property” for 4X, which is a characteristic of the Smirnov com-
pactification. We first prove a preliminary lemma.

LeMMA 1.2. Let A < 6X and suppose that E is open in X with
ClA c E. If C = ¢~ '(E), then | {[=]: [#]eClA} *< C.

Proof. By normality, choose G open in X such that Cl4 = G
c ClG < E. Take [#]eCl4, and set H = ¢ '(6X—@G). Then {C,H}
is a p-cover of (X, d). If HeF,, then

[x]e H = Clp[H] < (6X — @),

which contradicts [#]e G. Thus, by Lemma 1.1, [#] *< C, and the proof
1S complete.

THEOREM 1.3. Let f be a p-mapping of (X, 8) onto a proximity space
(X1, 6;). Then f has a continuous extension (necessarily a p-mapping) from
0X onto 6,X,.

Proof. Let f be the mapping of 4X into 6, X, defined Ly f([x])
= [f(z)),. Since f is a p-mapping, f is well defined (see Theorem 9.1.3
of [4]).

Suppose that f[4] is remote from f[B] in 6, X,. By normality, choose
open sets C, and D, in 6, X, satisfying Clf[4] < €, and CIf[B] < D,,
where C; and D, are remote. Let C = ¢;!(C,) and D = ¢;'(D,), where
@, is the canonical injection of X, into 6, X,. Then, by Lemma 1.2,

U {[#]: [#]e CIf[A]} *< ¢ and U {[=]: [z]e CIf[B]} *< D.

If U =f"C)and V = f~!(D), we have UdSV in X. Now, for [z]e 4,
suppose [z] n(j — (j) # . Then there is " *e X — U, where " ¢ [z]. It follows
that f(2')e X, —C,, so that [f(#)], = f([#])*E C, which is a contradiction.
Thus U {[=]: [#]e A} *< U and, similarly, (U {[#]: [#]e B} *< V. Since
U and V are remote and A =< U and B < V, we know that A4 and B are
remote in 6X. Thus f is a p-mapping, and the proof is complete.
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2. Locally compact proximity spaces. The equivalence of conditions
(i) through (iv) of the following theorem was established by Hirschfeld
in Theorem 5.5.4 of [4]:

THEOREM 2.1. For a completely regular non-compact space X, the fol-
lowing are equivalent:

(i) X s locally compact.

(ii) Every near-standard *point *belongs to some compact subset of X.
(iii) Every convergent ultrafilter has a compact member.

(iv) The collection of remote *points is the nucleus of a filter.

(v) There exists an admissible precompact uniformity # on X for
which the collection of all remote *points is precisely one equivalence class
of the nuclear equivalence relation for .

(vi) There is a compatible proximity relation 6 on X for which 6X — X
consists of a single point.

Proof. We need only establish that (v) and (vi) are equivalent with
(i) through (iv).

(1) implies (v). Let ~ be the equivalence relation on X whose equiv-
alence classes are the topological monads [#] of standard points ze X,
and the set of remote *points is the remaining equivalence class. We
show that =~ is nuclear. Thus, if z, % y,, we show that there is a set
Hc X xX such that (x,y)*e« H whenever x ~y, but (x,,y,) *¢ H.

If z, # y,, we may assume that z, is near-standard. Thus, z, is a mem-
ber of the topological monad of some standard point x,. Since y,*e X,
there is some open neighborhood V of z, such that y,*¢ V. Let W be a com-
pact neighborhood of z, contained in V. Then

(o, Yo)*¢ H = VX VU(X W) xX(X-W).

Suppose next that # ~ y. If both z and y are near-standard, hence
in the topological monad of some standard point 2, then either V or X — W
is an open neighborhood of z. Thus (z, y)*e H. If x and y are remote, then
x *¢ W and y*¢ W, since W is compact. Again (z, y)*e H. This shows
that ~ is nuclear, and so determines the desired admissible uniformity
# on X. It follows from (iv) and Theorem 7.4.5 of [4] that 5 is precompact.

(v) implies (vi). If 6 is the proximity relation on X induced by #,
then the equivalence classes on X which determine 6X are precisely the

monads of 5, so that dX — X consists of a single point, by the construction
in Theorem 1.2.

(vi) implies (iv). If 6X — X consists of a single point, then the col-
lection of remote *points of X is the nycleus of the unique free maximal
round filter on (X, §). This completes the proof.
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The following result shows that if X is not locally compact, then
X admits infinitely many distinet compatible proximity relations.

PRrOPOSITION 2.1. If X is a non-locally compact, completely regular space.
then there is an infinite ascending chain of compatible proximity relations for X.

Proof. Since X is not locally compact, the cardinal of X — X is
infinite, where fX is the Stone-Cech compactification of X. Now BX is
also the Smirnov compactification of X relative to the smallest compat-
ible proximity é, on X. Let p and ¢ be distinct points of X — X, and let
2, be any object not in gX. Let 6,X = (X —{p, ¢})u{x}, and
define a mapping 7, of fX onto 6,X by 7,(x) =z if 2 +* p, q, and by
7,(p) = 7:.(q) = x,. Provide §,X with the quotient topology relative
to 7,. The restriction of 7, to X is the identity, and 7,[fX] = 0, X insures
that 6, X is compact and Hausdorff. If d, is the proximity relation on X
induced by 4, X, then 7, is the Smirnov extension of 7, | X to fX. Clearly,
d¢ & 0,. Since 6, X — X is infinite, this process may be repeated to obtain
a compatible proximity 6, on X satisfying d, < 6; S 6,. Thus, inducti-
vely, we can generate an infinite ascending chain of compatible proxim-
ities for X, and the proof is complete.

We next consider proximity spaces (X, 6) for which 6X — X is finite.

THEOREM 2.2. If (X, 0) is a proximity space for which 06X — X coniains
exactly n points, then the proximity class w(0) contains only the wunique
precompact uniformity (90).

Proof. Assume that x(d) contains 5#,, where 5, #* 5 (J). Since
#; is not precompact, we can choose a symmetric entourage H e 5,
and a countably infinite subset 4 = {z;: ¢+ =1,2,...} of X such that

;¢ U{H(®): K =1,2,...,i} for each 1.

Select a collection of #+ 1 pairwise disjoint infinite subsets A4,, ...
...y A,., of A. Since no 4, is compact, each A4; has a remote *member y,.
Thus, for some ¢ and j, ¢ # j, we have [y,] = [y;] which implies that
A;84;. But H[A;]Jn4; =D, contradicting 5 e m(9).

Hence =(6) contains only the precompact uniformity 5#(4), and the
proof is complete.

To summarize, we state the following corollary:

COROLLARY 2.1. (i) If 6 is the locally compact proximity relation (of
Theorem 2.1y on X, then n(0d) contains only the precompact uniformity # (9).

(i) If o i8 an admissible non-precompact uniformity for X, and
if 0, 18 the proximity induced by #, then 6X — X is infinite.

(iii) If X admits a non-precompact uniformity #, then there i3 an
infinite ascending chain of compatible proximities for X, for which d, is
the imitial member of the chain.



PROXIMITY SPACES 23

Proof of (iii). If s is not precompact, card é, X — X is infinite.
Now applying the argument of the proof of Proposition 2.1 completes
the proof.

Proposition 2.1 insures that if X admits a unique compatible proximity,
then X is locally compact. There are many conditions equivalent to the
condition that a completely regular space X has a unique compactification
(e.g., see 6.J and 15.R of [3]). The next result, which follows immediately
from our previous results, provides a non-standard characterization of
such “almost compact” spaces.

COROLLARY 2.2. For a completely reqular space X, the following are
equivalent:

(1) X has a unique compatible proximity relation o.
(ii) X admits a unique uniformity (necessarily precompact).
(iii) There ts a unique nuclear equivalence relation on X.

(iv) X has a unique compactification (necessarily the one-point com-
pactification).

3. Extensions of real-valued p-functions. Let d; denote the proximity
relation in the real numbers induced by the standard metric, and let
P(X) be the class of real-valued proximity mappings on (X, 4). By The-
orem 1.3, each member f of P(X) has an extension f mapping 6X into
0xR. Thus f([#]) is real if and only if [f(2)]z = [r]g for some re R. Take
[#]e 6X and consider #,. If f is bounded on some member F of &,
then Cl,f[F'] is compact, so that every point of f[F] is near-standard
(see Theorem 35.5.2 of [4]). Thus f([z]) is real. Thus, if f([«]) is not real,
then f is unbounded on every member of #,,. The set ¢,X of all [#] in
X for which f([#]) is real for every member f of P(X) with proximity
inherited from 6X is the real-completion of (X, 8) (see [5]). If [x]e s X,
we say that #|,; is a real maximal round filter.

We next provide a characterization of the real maximal round filters.
A subset S of (X, 9) is called relatively p-pseudocompact if every fe P(X)
is bounded on 8.

THEOREM 3.1. F, 8 real if and only if F, contains a relatively
p-pseudocompact member.

Proof. If F is a relatively p-pseudocompact member of &, then
f[F] is bounded for each fe P(X), and f([#]) is real.
Conversely, suppose #,; is real, so that every member f of P(X) has
a real-extension f at [#]. Choose an infinitesimal *member F of &# [)r Now
fIF1< fla] < [f@)]g = [rlp < 4,
where A is the interval [r—1,r+ 1] in B. Thus the statement
3F e #(,)[Vfe P(X)[Ja, be R: f[F) < [a, b]]]
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is true in *#. Reinterpreting this in #, there exists an Fe% |, on which
every fe P(X) is bounded, so F is relatively p-pseudocompact. This com-
pletes the proof.

In metric spaces, where ¢ is the metric proximity, every totally bound-
ed set is relatively p-pseudocompact. But examples can be found to show
that the converse need not be true. Thus, even in metric spaces relatively
p-pseudocompact sets are not coincidental with the totally bounded sets.
Finally, we observe that (X, d) is compact if and only if £,X = X and X
is relatively p-pseudocompact.
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