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Extremal pairs of Aharonov

by J. Sabkowska (Gliwice)

Abstract. Let [, g be functions holomorphic and univalent in the unit disc U = {z: [z} < 1},
{(0) =0, g(0) = 0. and such that f(z) g{{) # 1 for any =z, (e U. (. 9) is called a pair of Aharonov.

In this paper we obtain a system of differentialfunctional equations for an extremal pair
and we give some general properties of pairs which are solutions of that system.

Introduction. Let f, g be functions holomorphic and univalent in the unit
disc U = [z: |z| <1}, of the form

(1 fR)=byz+ayz?+..., g2 =byz+az>+...

and such that

(2) f@g)#1 for any z, {eU.

The functions f(z) and h(z) = 1/g(z) are said to have disjoint sets of values
since, by (2), f(U)nh(U) = @. Pairs (f, g) with properties (1) and (2) have
been investigated by several authors, D. Aharonov [1], [2], among them,
and recently by J. A. Hummel [7], who called them univalent pairs of
Aharonov; following Hummel, we will denote by &/ the set of all univalent
pairs of Aharonov. ‘

Any pair (f, 1/g), where (f, g)€ &/, represents a special case of a system
of n functions meromorphic and univalent in U, normalized by prescribing
their values at zero, with disjoint sets of values; as it turned out lately,
investigation of several well-known families of univalent functions such as,
for instance, bounded functions, those of Bieberbach—Eilenberg, of Grunsky—
Shah, of Gelfer, and the like, resolves itself to a considerable extent into
investigating such pairs. This is accomplished in such a way that to each of
the functions of the above-mentioned classes one assigns a function which
constitutes, together with the former, a pair of Aharonov.

Systems of functions with disjoint sets of values have been dealt with for
a long time. Those investigations were initiated by Russian mathematicians.
The first of them was M. A. Lavrentev: who estimated, as early as 1934, the
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product of the mapping radii for a pair of functions with disjoint sets of
values by means of a variational method invented by him [16]. The next one
was G. M. Golousin who gave in [4] variational formulae of the type of
interior variation of Schiffer~Golousin-Spencer-Schaeffer for a system of n
functions with disjoint sets of values and, with use of them, estimated the
product of the mapping radii for n = 3. The investigations were continued by
N. A. Lebedev [10]-[15] and Yu. A. Alenicyn, and later on, by L.L.
Gromova [5], [6] and J. A. Aleksandrov and M. N. Nikusina [3]. N. A,
Lebedev [11], among others, applied the variational formulae of Golousin to
pairs of Aharonov, to examine the set of values of the functional f(z)g((),
where z, {e U are arbitrary fixed points, as (f, g) range over &/. In the late
50's also mathematicians from the western countries, J. A. Jenkins [8], [9],
D. Aharonov, J. A. Hummel, to list a few, started to deal with pairs of
functions with disjoint sets of values and succeeded in grasping what it is
that the families of bounded functions, of Bieberbach-Eilenberg functions
and of Grunsky-Shah functions have in common. All of them except Jenkins
who availed himself also of the méthod of extremal metric [8], and
Aleksandrov who found a parametric representation of the type of Loewner
[3], applied the area method which leads to an inequality of the type of
Grunsky—Nehari's (e.g. Hummel [7]), which in turn leads, through a suitable
choice of parameters, to estimating a great many functionals defined on the
set »/. What is more, the area method enables one in numerous cases
actually to find all extremal functions, and thereby to prove the accuracy of
the estimates obtained. The disadvantage of this method lies in that with its
help one can investigate functionals of a specific form only, namely those for
which the part of the Gateaux differential in which the functions f and ¢
occur explicitly, is a perfect square, while for instance the above-mentioned
functional f(z)g({), estimated by Lebedev, does not passess this property.
Although variational formulae have been repeatedly applied to estimating
different functionals in the set of pairs of Aharonov as well as in the set of
systems of functions with disjoint sets of values, the authoress has not
encountered in the literature any differential-functional equations for an
extremal pair, derived from these formulae and analogous to the differential-
functional equation of Schiffer-Schaeffer-Spencer—Charzyniski which is de-
rived from the interior variation of a univalent function. This paper just aims
at filling this gap and at establishing certain general properties of the
resuiting system of equations, and also of extremal pairs which are solutions
to that system().

(') During the preparation this paper the authoress did not know the paper of
J.A. Hummel and M. N. Schiller, Variations methods for Bieberbach-Eilenberg functions and
for pairs, Ann. Acad. Sci. Fennicae, Ser. A.l. Mathematica, Vol. 3 (1977), p. 342, which contains
some of the results presented here.
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1. Variations of a pair of Aharonov. Let .7, denote a set whose elements
are any pairs of functions holomorphic in the disc U and vanishing at zero.
Obviously, o = F,, #, is a linear space over the field of complex numbers
if the operations are defined as usual: if (f}, g,), (2, 92)€F, and AeC, then

(1, 90+, g2) = (1 +/2, 91 +g2),  Alfh, 91) = (411, 4g1).

We give the space #, topological structure by assuming that a sequence of
pairs (f,, g, converges to (f,g) if and only if f,—f and g,—g almost
uniformly in U. In this way we have made #, into a linear-topological
space. Let now ® = &((f, g)) be a real functional defined at least on /. By
an extremal pair of Aharonov in the family .o/, with respect to the functional
&, we will mean a pair (f g)e o/ such that for every pair (f*, g*)e.« either
the inequality @((f* M <D, g, or B(f* g% = d(f g) is satisfied.
(Accordingly, (f, g) is called a maximal pair or a minimal pair.)

Let (f, g)e /. A family of pairs {(f;, g,), 0 < A < Ay} is called a variation
of (f,9) in o if (f, g))eo, 0K A< 4o, (fo, g0) =(f, g) and the limits

3) Jo( )_—fz(z)h 0= 1 bt ))Tf(Z)
-0+
(3) gol2z) = (%9; (@)l1=0 = ll_i.r;]+ M)——g(—ﬂ_

exist in the sense of the almost uniform convergence in U.
It follows from (3) and (3') that

(37 Hi@) =@+ M@ +0(d),  g:(2) = g(2)+ Ao (2)+0(R),

where 0(4)/4 — 0 almost uniformly in U. Basing on Golousin’s method of
constructing variations of functions of the class § [4] and making use of
Loewner’s variation [17], p. 185, Lebedev constructed examples of variations
of a pair (f, g)e o, [12]. And so, the following families are variations:

(a) In the case where the set C\(f(U) U h(U)) has interior points and w is
an interior point, there exist variations {(f{", g{")} and {(f{?, i)} (with
A > 0 sufficiently small) such that

2
@ 0=+ e —g@1-tal Ok,
, _ HCI _ 9(2
@) fPE=f@-layT, cokol), P =g+iat,

where aeC is arbitrary and o(A)/A — 0+almost uniformly in U as A —0+.
Proof. Consider the functions

) 162
[i(2) =f(2) +lam,

h(z)

h,(z) = h(z)+lah(z)_w,
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where h(z) =[g(z)]” " and w is an interior point of the set C\(f(U)}u h(U));
notice that, for a sufficiently small A and for arbitrary complex a, these are
functions with disjoint sets of values. Indeed, if z, z; eU, then

w
Si(2) = ha(z) = (f &)= h(20)) (1 ~ A=W (zl)—W)) '

Since w is an exterior point for the domains f(U) and h(U), there exists a
o > 0 such that |f(z)—w| > ¢ and |h(z,)—w| = ¢, whence it follows that

_ v
=T

7 (

(/@)= w)(h(z1)—w)

and consequently,

f2 ()= hi(20)] = |f (2) = h(z,)| (1 = Alal [wi/e?) > O

for 1 < p?/|a||w|; thus we have, for such A, f;(z) # h;(z,) with any z, z,eU.
Putting

f.l(l)(z) =fi.(z)s

1 1 1 9%(2)
(1) _ —_ — — A
gy (Z) - hl (Z) h (Z) . +la 1 g (Z) A'a 1— wg (Z) +o0 (2')3

h(z)—w
where o(A)/4 = 0 as 1 —» 0+ almost uniformly in U, we find with no difficulty
that the pairs of Aharonov (f{", 4{"’) constitute a variation of the form (4).
(B) There exist variations (f{, g) and (/*, ¢4¥) (with 2> 0 suf-
ficiently small) such that

5) S22 =f(2)+2a

.f(z{iz}m A (cf'((cc))z) Zf—(? ¥
”‘T(c.{'(?c))z) Tiow
(0 =g -day 400
R L e )
0@ = g0+ ia— S0 o (5%)%*
H&(C%’)Z;{(ﬁ?ﬂ(”’

where {eU, aeC are arbitrary and o(A)/A— 0 almost uniformly in U as
A—=0+.
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Proof. Let {eU be arbitrary. Consider the annulus R = {r <|z| <1},
[l <r < 1. In this annulus the function
f(2)
F,(z2)=f(@)+ida—"——=—
B =S O+ A
is a function holomorphic and, for 4 sufficiently small, univalent in R. Along
with F,(z) let us consider the function

h(z)
h(z)—-f (O
in the disc U. h,(z) is a function holomorphic in U since h(z) # f({) and, for

sufficiently small 4, univalent. The domains F;(R) and h; (U) are disjoint if 4
is small enough. Clearly, for any zeR and z,eU,

S(©) '

—hy(z,) = —h 1- .

Fald) bz = /@) (z‘”( A"(f(z)—f(c))(h(zl)—f(c)))
But f({) is an exterior point of either of the domains f(R) and h(U);
therefore there exists a ¢ > 0 such that [f(z)—f({)| = ¢ and |h(z;)—f ()| = o

for every zeR and z, e U, whence it follows that

f (C) ’ lf (C)l
(f@~S Q) () =f Q)]

for every zeR and every z, e U. Thus

h,(2) = h(z)+ Aa

2

lf(C | 0
laf LF QW

|[Fi(@)—hy(z)l 2 | f(2)— h(zy [( )>0 for 0<i<
whence F,(z) # h,;(z,) for any zeR and zleU.

Let now &, denote the union of F,(R) and the bounded component of
the set C\F,(R). From the Golousin theorem [17], p. 186, it follows after
easy calculation that the function f;(z), f(0) = 0, univalent in U and mapping
U onto @,, is of the form

1) 1O\
= /@ e M (U’(C)’) S
T P2
”“(c.f'm) = T

where 0(2)/A — 0 as A — 0+ almost uniformly in U. Moreover, as it follows
from the above-described construction of the functions f;(z), and h,;(z) the
domains f,(U) and h,;(U) are disjoint, and hence the functions f{*(z) = f;(z)

2
and g(2) = [y ()] = (o) dar—2 2

——————+0(A) constitute a pair of
1-g(2)/(©)
Aharonov.
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(y) There exist variations {(f{*, g} and {(fi?, ¢)} (with 2> 0 suf-
ficiently small) such that

© ©@) = Q- lf O rol), g0 =96

© 190 =10, ¢90 =907 @ o,

where {ecU is arbitrary and o(A)/A— 0 almost uniformly in U as 4 —0+.

We shall give here yet another evident example of a variation, which
arises by rotation of the disc U about its centre.

(8) There exist variations {(f{”, g0")} and {(f{¥, ¢®)} (with A > 0 suf-
ficiently small) such that

7 @) =@ tidzf" @) +0(), g7 (2) =4g(2),
(7) @) =f2), 492 =g(2xilzg'(z)+o(A),
where o(A)/A — 0 almost uniformly in U as 14— 0+.

2. Variations of functionals in the space of pairs. Let & — #, be an
arbitrary subset of the space #,, and let @ be a real functional defined in &.
We say that @ has a complex derivative in the sense of Gdteaux at the point
(f, g)e &F with respect to & if there exists a linear continuous functional
Ly, defined in #,, such that

(8) B((f*, g%) = D((f, 9))+4 re Ly,q((h, K)+0(A),

where (f* g¥eZ, A>0 and (f* g*) =(/, g)+4i(h, k)+0(4), where
(h, ke F, and 0(A)/2 =0 as A - 0+, almost uniformly in U x U. From (8)
and (3") the following theorem results.

THEOREM 1. Let @ be a real functional defined in the set .o/ and suppose.
that for a pair (f, g)e o the functional @ has a derivative in the sense of
Gateaux with respect to the set . If (f, g) is a maximal pair for the functional
® in the set s, then for every variation {(f, g;)} of the pair (f, g) in </ there
holds the inequality '

©) te Ly ((fo, 90) < 0

where f,, go are defined by formulae (3) and (3').

Proof. This theorem is an immediate consequence of the representa-
tion (8).

Writing down condition (9) for the variations defined in (o), (B), (¥), (9),
we obtain the following four properties which are shared by maximal pairs
(f, g) in the family .o/ with respect to the functional ¢ having at the point
(f, 9) a complex derivative L, in the sense of Giteaux.
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PropertY 1. For any weint C\(f(U)u h(U)), the equalities

fa  —g*@2 )\ _
LU-E)( (z)_w’ l_wg(z )) _‘Oa

@) g@@ \\_,.
LU-E) ((l_wf(z)’ g(Z)—W)) - 03

hold; z is here an apparent variable, and the left-hand sides of (10) are
functions of the variable w.

Proof. This property follows immediately from (3), (3') (3"), (9) and
the arbitrariness of a complex.

Property II. For an arbitrary (€U, the equalities

L f@) _( J© )zf’(z) g*(2) )+
CONN\f)-f O \T'©) 2= 1-f(0)g(z)
i} 0 \2r@ o))\
s (((U’(C)z) 1-& 0)) -
L ( —f%(2) g(2) _( g0 )29'(2)) n
CO\\1-9(0/@) 9@ ~9(0) \Lg'©)?) z—¢

- 9@ \2g @\ _
+LU'.0) ((0, ((g, (C)z) 1 —EZ‘ )) .— 0

hold; z is here an apparent variable, and the left-hand sides of (11) are functions
of the variable {, L, ((h, k)) = L. ((h, k).

Proof. This property follows fmmcdiately from (4), (4", 3"), (9) and the
arbitrariness of a complex.

ProprERTY III. For any ([ edU, the inequalities

o L (~r 05220 0)) <0

re Ly o ((0, —zg’(z)g)) <0,

hold; z is here an appdrent variable, and the left-hand sides of (12) are functions
of the variable (,

Proof. This property follows at once from (5), (5'), (3”) and (9).
ProrerTY IV. There hold equalities

(13) im Ly ,((zf'(2), 0)) =0, im Ly,,((0, z¢'(2)) = 0.
Proof. This property follows at once from (6), (6'), (3“) and (9).

(10)

(11)

(12)
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Taking account of the representation of continuous linear functionals in
the set of analytic functions on U (see [18], p. 34), we observe that there exist
functions ¢, (z) and (p2 (2) dnalytlc in C\lz lz] <'r }, 0 <r < 1, vanishing at
oo, and circles C; = {z: |z =r;}, C3 = [z: |z2| =1}, r < r(, r; <1, such that
for every (h, k)e #,

Li,g ((h, k) = L, ((h, 0))+L(f.g) (0, k)

1 1
=2—m_c_‘|’l h(z) o, (2) ch+2— [/\ (2) pa(2)dz.

We now apply this result to an extension of the functional L , from
the class &, to a continuous linear functional on the class of all pairs (h, k)
of functions meromorphic in U, where & has no poles on C, and k has no
poles on C,. As a consequence, taking account of (13), we may write (11) in
the form

(Cf © ((/f Of( z) g% ))
f(<, o '1-1(0)g(2)
z - 1+&
=1Ly (( zf'(z C+Z ))"' Ly ((Zf'(z) 0 ngz 0))
(@9) L (( 90/*@) 909 ))
g©) ) "T\\1-9(0f2" 9()—g(2)

i
— 3L, ((o 24 (z )§+_))+§LU ) ((o 29'(2) +5f))

where (€U, (¢C, uC,.
Assuming

2 2(z) '\
(14) P(w)=L;, ((Wf_ffz()z)’ l“igwciz()z) ) ) ’

we observe that system (14) can be given the following, more symmetric
form:

(f,}{ (C)) PO+ Lygy (F2, 0))

+ _ 1+F
= 3L, (( (2 )g d 0))+%LM, ((zf'(z):—g_j, o)),
{g'(O)\? 1
(£9) (P (55 a0 g(z»))
IR i} 1+E
=1Ly ((0 zg (Z)CTZ))‘*' 1Ly g ((0, zg'(z) ltg))

(14)

(15)
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ProPertY V. The right-hand sides of (15) are non-neyative on the
circle ¢U.
Proof. The property follows immediately from inequalities (12).
L]
3. Functionals of finite order and their variations. Let z,, n=1,..., M, {,,
v =1,...,N, be any points of the disc U, and [, p=1,....M, A, v=1,..,N,
any integers > 0. M = 0 or N = 0 will indicate that there are no points z, or
(. Let [ =0, 4o =0 be any integers. Put
(16) ,1=IO+II+-.-+IM+}~O+)~1+-..+;I.N.
To any pair (f, g)€Fo, f(2) = by rz+by 2>+ o, g(z) = by z+by 22+ .., let
us assign an n-dimensional vector v»((f,g)) with the components
(A7 by, k=1, by k=1,.,4, () k=0..1-1,
u=1...., M, ¢"(). k=0....2,~1, v=1...,N.

lo =0 or 4y, =0 indicate that in v((f, g)) the coefficients of the functions f or
g do not appear as components. Let us take into consideration the set

V="w(f9): (f.gle/}| = C"

and let X (w) be a real-valued function of class C'*’ in some open neigh-
bourhood of the set V. Define in ./ a continuous functional @ by

(18) ¢((f* g)) = X(U«f’ g)))= X(blfﬂ"'ablof’ blgs“"blog-
fEe SNz, g () g T,

Following Pommerencke [17], p. 184, we shall call functionals of this
form functionals of finite order, and the number n defined by means of (16)
— the order of @. The differential of the function X(w) is given by the
formula

X 0X X 10X oX°
dX =2re erdW', X, = FYREREEE ) where — =z|=—-i s
l ) w oy . ~ A
0w,y Cw, cw; o 2\duy Oy

w; = u;+iv;. The vector v is a linear function of its components (17), and
therefore, for any pair (f, g)e s/, if (f* g*) =(f, 9) +A(h, k)+(04 (), 02(4)),
where (h, k)e #4 and 0;(2)/A—0 as 2 — 0 almost uniformly in U, we have

P((f* g%) = D((f, @)+ 2 re Lyq((h, k)+o(A),
where
(19) Ly, ((h, k) =2X,(0((/, 9))v((h, k)
and o(4)/A—0 as 1 —0. Put

h(z) = ciz+c2°+ ..., k(z)=dz+dz%+ ...;
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then
1,-1 Ag—1
(20) Ly ((h, k)) = kZO Yok ((f, 9))Crs1+ kZo Sok ((fs 9))dk+ 1+
M1t N A1
+Z;HMmmW +2;¥ﬂfﬂwm)
r=1 y=

We shall now examine the form that the system of equations (15) takes on in
our case. To begin with, we transform the left-hand sides of these equations
by introducing Faber’s polynomials. And thus, making use of the relation

1 D 4}
=14 Y 4tF, ()2
1—tf(2) kglk od

where F,, is the A th polynomial of Faber for the function 1/f, and of an
analogous relation for the function g, we get

L0 _ S 4 (Fip (1w~ k)2
(21) w—f (Z) k=1
wgl@) & o
1-wg(2) B kZ:l IL(FM w) N kbkg) #
where

FF(w) = b5 w™ D4 B, w™ D4 by,
$Fig(W) =By w1 4+ B, w2+ L by,

Further, we find that

2@ _KLEUEF | & ey _
( ) —fZ) (W f(z)k+1 Z(W—f(z))j, k—-].’ 2,...,
(22)
Gwam kg )mmr“lﬁz%mw e
dz l_wg(z) (1 wg(z)k+1 j=1(1—wg(2))',, =1 400

where the functions ¢;(z) and V,,(z) do not depend on w. Put z5 ={, =0.
Let k,, n=0,....,. M, %, v=0,...,N, denote the greatest indices such that
Vur,—1 (s 9)) # 0 and d,,, _,((f, g)) # 0 in (20). From (21) and (22), in view of
the fact that flz)#0, 1 (z #0,9()#0, 9)#0, u#0, v+#0, we infer
that the function P(w) from (14') has in this case the form

kg—1 1

(23) Pw= ) YOkk__'_l(F:¢+I.f(l/W)—(k+l)bk+1,f)+
k=0

M8 RSP ()] 0 (2,)
+n§:l k;O yu'k( ( j(z“))"""l * Z _f(zu))")+
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o1
1
+ z ok Frena W —(k+ Dby )+

" (KGRI G & ) w
+3 25”‘( (T—gGywF* ) L - wg G

v=1 k=0

or simply

) > % b3 3 P
(24 Pw)y= ) ).

p=0j=1 (W—f(z“)) v=0j= 1(1 wg(C ))j
where ko =ko—1, k, =k, p>0, x5=1x%—1, %, =x, v>0, Yy, #0,
u=0,.... M, ﬁv"'v #0,v=0,...,N. The terms in (23) with g =0or u> 0 are
omitted when /; =0 or M =0; the same concerns the terms with v =0 or
v> 0 when 4, =0 or N = 0; besides, we see that P(w) is a rational function
of degree n’ = kg + ... +kjy+xp+ ...+ xy, with obvious changes in the cases
of k=0, =0, M=0, N=0. If we now write the left-hand sides of
equations (15) in the forms

’ 2 v 7 2
(CTf(c(TC)) P (f0) and (%S—)) P,((0),

then, on account of the relations
Pi(wy=PwW+Lys, (. 0) and Pz(W) = P(1/w)+ L, ((0, 9)),

P, and P, are also rational functions of degree n’, as described above.
We shall now calculate the right-hand sides in (15). On account of the

relations
k-1

ZfI(Z)CT-H'+ Z (kbv"‘z Z (k—j)bk_M-C‘-")z",

k=1 j=1

d {+z]| k!'Z22f'(2) & xuy(2
+ )
( ) [f ) } (~2z)*! ,;o(C—Z)’
where y,;(z) does not depend on {, and of analogous relations written for g,
on account of the fact that the right-hand sides of equations (15) are real-

valued on the circle 0U, we find (denoting those right-hand sides by @, and
Q,. respectively) that they are of the form

Z( Ayj -I-lj(j
0,0 = #zo(ﬁ((c Lo Z”O,.))ﬁua,

b E\'jcj
Z z((c —yt c‘vc)f))“”

By #0, u=0,....M

B 20, v=0,..,N,
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with a, b real; thus they are rational functions of degree 2ny = 2(ky+ ...
+ky) and 2n, = 2(x¢+ ... +xy) respectively, with obvious changes in the
cases of k=0, %o =0, M =0, N=0. Obviously, we have n}+n) =n"
Moreover, since the functions Q, and @, are of constant sign on U, it
follows that all zeros of these functions, situated on the unit circle, must be
of even order. '

The results ohtained abeve will be summarized in the following theorem.

THeoREM 2. Let ® be a functional defined on </, of finite order n, of the
form (19). Suppose that for a pair (f, g)e.</, @ has a complex derivative in the
sense of Gdteaux L ), of the form (20). Let (f, g) be an extremal pair for @,
then

O\ _ {g' (D) \? o
(25) (f(() ) P {f0) = Q: (), (g(C) ) P2 (g(D) = Q2(0),

where
Py(w) = P(W)+ Ly, ((f, 0), Py(w) = P(I/w)+ L, ((0, 9)),

_ ) wit(e)
PO =Lig ((w—f(z)’ T—wg(2) ))

“ o C+4 . 1+¢Z
le—:ug,g,((fu) - )) +1L, ((f(z) = ))
0:(0) = 1Ly, (( 0,591 )+ LU,,,((O )]

P(w) being rational function of the form
f Z‘f 1”‘) al XZ"‘ ﬁ\'jwj ,
4=0j= 1 /(~ v= 01 1 1"“’9(511))"
Xk, #0, u=0,...,. M, /3\.,,.“ #0,v=0,...,N,

of order 0 = ko+ki+ ... +kiy+xo+xi+ ... +xy, where ki = ko—1, K =A,
J=L.uM, %o =3x—1, %j=%, j=1,..,N, k;<l, j=0,.., M, xj<l
—0 .+ N; here we assume ko =0 or x5 = 0 if kg =0 or 0—Ocmdk'—Oor
x = 0 J>0,if M=0or N=0; the functions Q,({) and Q,() are ranona[
Junctions of the form

(26)
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with a, b real, of orders 2ny = 2(kg+ ... +kiy) and 2n), = 2(xp+ ... +xy),
respectively. The functions Q. () and Q,({) are non-negative on the circle ¢'U.

Equations (25), similarly, to the case of functions of the class §, cf. [17],
p. 192-193, may be used Lo gather information about extremal domains, i.e.,
domains f(U) and ¢ (U), and consequently, about the disjoint domains f(U)
and n1(U) in the case where (f, g) constitute an extremal pair. The following
theorem holds.

THEOREM 3. Let @ be a functional defined on .o/, of finite order, having a
complex derivative in the sense of Gdteaux for a pair (f, g). If this derivative is
not identically zero, then Py(w)# 0, Po(w) £0, and the set C\(f(U)u h(U))
has no interior points.

Proof. The assumption that the derivative L ,((h, k)) is non-zero is
equivalent, in virtue of (20), to saying that y,, # 0 for some y and some k, or
0., 7 0 for some v and some k; hence and from (23), in view of the fact that
fiz)#0, f'(z)#0, g((,) #0, g'({,) # 0, f(z,) different from one another,
g({,) different from one another, f(z,)g({,) # 1, it follows that P(w) s const,
and thus P, (w) and P,(w) are not identically zero. Presently we shall prove
that the set C\(f(U)u h(U)) has no interior points. Suppose, on the con-
trary, that this set contains some disc U,. From Property I, (10) it follows, in

particular, that
&) 2@ \\_
Lo ((w —f(z) 1—wg (z))) =0

for every weU,. From the relation

6 4@
P {w) = WLU',g) ((W - f(z), 1 —W; (Z)))

we see that P, (w) =0 in U,. and since ‘P, (w) is a rational function, we have
P, (w) =0 in C, despite of what was shown above.

4. Example. To illustrate the theorems given above, we shall now find
an estimate for the following functional. Let

27) X (w) = re{loglf—f::‘:v—z},

where (w,, w,, ws, w,)eC* and wywy # 1, wow, # 0. Let

S'(z4)g'(z) }

1-f(z1)g(z2) §’

where z,,z,eU are arbitrary but fixed. The functional ¢ is, obviously,

defined in the set of Aharonov’s pairs ., since f(z,)g(z;)#1 and
f'(z1)¢'(z;) # 0 for (f, g)e.o/. & also possesses a complex derivative in the

(27) o((f, 9)) = re{log
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sense of Gateaux at each point (f, g)es/; according to (19), (27), this
derivative is defined as the functional

g (z) K (z))+f'(2,) k' (z)) +29(Zz) h(z1)+f(21)k(z,)

f'(z1)g'(z2) 1-f(z1)g(z2)

(28) Ly, ((h, k) =

where (h, k)e #,.
We now show that the functional @ attains its maximal value in the
family .. To this end, we assign to each pair (f, g) the pair

f@)=biff@), §(@) =bi'g(2);

these are functions of the class S; however, they do not necessarily form a
pair of Aharonov. But the functions

(29) J@ =byb, f(2), §@)=§(2)
constitute a pair of Aharonov, and, as can be easily seen, the equality
(30) @ ((f(2), 5(2))) =9((1, 9)

holds. Next, let us notes that the functional & is bounded from above.
Indeed, making use of the estimate |b,, b, | < 4, which follows immediately
from the Koebe covering theorem and from the Schwarz lemma, and from

. - . z 1+|z]
two inequalities valid for the class §: <s——, f'(@)) € ——, on
account of (29) and (30) we obtain
o((f, 9) = (]} 9) = D((bss b ], §))
=1log |by, by, S (21)§ (z2)| — 2log |1 = by, by, F(2,) § (z5)]
4(14|z4]) (1 +{z2))
<lo < 400,
& (L= lza) (1= 23D [(1 =1z, )2 (1 —|2,])2 = B |zy] |z, | %
whenever
(31) (1=|z:1)* (1 ~|z41)2 — 4z, | |z,] # O.

Let M = sup &((f, g)). In virtue what was said above, M < + 0. .On
Ve
the other hand, M > — oo, since there exist pairs of Aharonov, e.g. the pair

(/, 9) = (z, 2), for which ®((f, g)) > —o0. Of course, there exists a sequence
(s 90}, s ga) €, such that &((f,, g,) = M. The sequence {bys, by}, being
bounded, contains a convergent subsequence; also the sequences {f,} and
1d»}, consisting of functions of the class S, also contain convergent subse-
quences. Thus we may just assume that the sequences {f,} and {§,} converge
to the functions f and g, respectively; (f, §)e o or f = 0. If we had f = 0, then
®(fo 9n) = ®((J,» ) = — 0, which is impossible since ®(f,, g,) = M > — 0.
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Hence we infer that under our assumptions the upper bound of the functional
@ in the family .o/ is attained at the pair (f; §).

Let now (f, g) be an arbitrary maximal pair. In order to find a systemi of
equations (25), we first check by an easy calculation using (14') and (28), that

B 1 g(z2) Y\
P(W)+ Ly ((f, 0)) = w? (w—f(zl) = (zﬂ) |

1 2
P(1/W)+ Ly, (0. 9)) = (l—wf(zl)_*—wi(;?iz)) |

The right-hand sides of the desired equations are, by (26), of the form

__Gn a1, ¢ 252 a;,
Y e ey g L oY L
31 dy { asa @y, (*
+C"Zz 1—32C+(C—22)2 (1_225)2 +a
by, byi by, by, (?

L e BN R
b21 bzlc bzz bzz CZ
e Tl TP U-50]

where a and b are real. The functions Q, and Q, are non-negative on the
circle dU. Consequently, relations (25) take the form

2 (j 9(z2) )"'=Ql(c)
O—T@) 1-/0e@) ~ ¢

fe) V0.0
(C)(Q(C)—Q(Zz+1—9(C)f(21)> =z

These relations hold in the disc U, whence it follows that all roots and poles
of the functions Q, and Q, lying in U are even-tuple and so are, on account
of the symmetry of these functions with respect to the circle dU, roots and
poles lying outside U. On the other hand, the roots of the functions Q, and
0, lying on the circle dU (if there are any) are also even-tuple, because these
functions are positive-valued on the circle. Summing up, we see that the two
functions Q, and Q, have only even-tuple roots and poles and therefore they
are squares of some rational functions q; and g,. Extracting a square root
from both sides of equalities (32), we obtain equivalent equalities

' 1 g (22) _ QI (C)
f (C)(r(a) “F@n 1 —f(C)g(Zz)) =7

, 1 f(z5) =‘12(C)
0 o) "

+b,

(32)

33)

3 — Annales Polonici Mathematici XL1.3
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where g, and g, are rational functions, real-valued on the circle (:U The left-
hand sides of (33) are regular functions at the point { = 0; therefore g ({)/¢
and q,()/¢ are also regular at { =0 and so they are of the form

4: () __ Aun + Ay + Az A21
{ zyl—z) 1-5,0 z(— Zz) 1-2,0
q2({) _ By, B, B, B,,

U "5z 1-7,0 5@-2) 1-5,(

Integrating equalities (33) in a neighbourhood of { = 0, we get
log (f({)—f(z1))—log (1 —g(z,) f (D))

A A _ A
=iog(l—z)—Flog(1-7, ) +—2Llog (L —z;)—
2 2, 2y

(34) An log(l—z;C)—Hoga
log(g(0)—g(zx))—log(1—f(z)) g (C))

illlog(C zl)——log(l—zlm—los@ 22)—

1

By L log(1—-2,0) +log}$.

73
From further comparison of the left- and right-hand sides of equality (34) at
follows that 4,,/z, =1, A,;, =0, B,,/z, =1 and B;, = 0. Taking account of
the above and dropping the logarithms in (34), we obtain

F) =1z — {—z, g()—g(z,) _ {—z,
1—gz)f) 1=z, 1-f(z)g9(©) 1-2,{

for {eU. Putting further { =0 in (35), we arrive at the conclusion that
o = f(z,)/z, and p =g(z,)/z;, and so equalities (35) will take the form

JO—SG) _fz) §~z gl)~9g(zs) _g(za) {—za
l—g@) Q) 2z, 1-70 1—-f(z)g) z; 1-5(
Moreover, we claim that

(37) 1/ (z1)g(22) =z, 23l

Indeed this follows from the corollary to Theorem 3; on the circle dU there
exist two points {; and {; such that f({,) = h({,) = 1/g({,). Putting in the
first equality of (36) { ={;, in the other one { =(,, and equating the left-
hand sides of the relations thus obtained, we get
fe) bL-z _ 2 1-730,
zy 1-Z{; gz {3—2,
from which relation (37) follows.

(35)

(36)

?
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Finally, let us calculate the value of the functional & at the maximal pair
(f, g). With that end in view, let us pass to the limit with { — 2z, and { -z, in
the first and the second equality (36), respectively; we obtain

f'(z4) - flz) 1 g'(z3) _ glza) 1 |
1-1(z,)g(z2) % 1‘|21|2’ 1-f(24)g(z2) ) 1—"|Zzlz’
hence, taking account on (37), we have
" @)g @) _ 1
1=f(z)g@)?  (1~lzH (1 —izal®)

But the pair (f, g) is maximal for the functional @ in the family o ; hence, by
(38), the inequality '

(38)

11—1(21) g ()
(L—|z1)%) (1=|z4)

necessarity holds for each pair (f, g)e /.

This inequality was obtained by Jenkins [8], p. 206, by the method of
quadratic differentials. Since f, g, f', g’ are continuous, we now can drop the
assumption that (1—[z,)[2(1~]|z,))2—4]z4||z,5] # 0.

In the case where condition (31) is satisfied, the existence of a pair
maximizing the functional @ has been proved. Let us now reflect upon
whether there exists a maximal pair in the case where this condition is not
satisfied.

Consider the pair (f, g) of functions defined by the relations

(38) If'(z1)9'(z2) <

f—azy  z—z g—bz,  z—z,
1=bz,f 1—z,2° 1l—az;g 1-%,2

(39)

where z,, z, €U are arbitrary, a, beC are arbitrary, and |ab| = 1. Formulae
(39) define f and g as functions holomorphic and univalent in the disc U,
Indeed, the values —1/bz, and —1/az, with which the homographies on the
left-hand sides of (39) assume infinite values are not in the set of values
assumed by the homographies on the right-hand sides of (39) in the disc U,
since we have, in view of |ab| = 1,

——%#a Z__zl and —isé z—_zz for zeU.
bz, " 1-z;z az, 1—z,z
Put z=0 in (39); we get
f(0)—az, g(0)~bz,
—_— = d ———=-}
bz 0 Toazg0) Y

from which it follows that f(0) = g(0) = 0. It is still to be proved that-the
functions f and h have disjoint sets of values. Suppose, on the contrary, that
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for some {,, {,eU we have f({,) = h({5) = 1/g({;). On account of (39), we
would have

JLima 1 1-50
1-z,¢, b Cz‘zz,

which is impossible in view of the fact that |ab| = 1.

Consequently, the functions satisfying (39) constitute a pair of Aharonov.

Let us eventually calculate the value of the functional & for functions
defined by means of (39). Putting z =2z, and z =z, in the first and in the
second of relations (39), we see that f(z,) = azy, g(z,) = bz,. Dividing the
first of relations (39) by z—z, and the second one by z—z, and passing to
the limit with z -z, and z -z, we obtain

fz) _  a g'(z3) b

1—f@)glz) -1l 1-f)gk) 1-laf”
on account of the condition |ab| = 1, for the pair (f, g) there appears the
equality sign in inequality (38'). Consequently, inequality (38') is exact in the
class .o/ of the pairs of Aharonov for any points z,, z,eU.
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