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Abstract. It is proved that the shortest path p: [0, 1] — R? which intersects every straight
line which intersects the unit circle is one-to-one and has length n+2 (see Figure 16).

1. Introduction. M. Magidor has related the following story to us. A
telephone company, while repairing buried cable, has discovered that the
cable is often not directly under the marker erected above it. To insure
finding the cable, even when its direction is unknown, they have their
repairmen dig in a circle of radius 2 meters about the marker. Magidor notes
that this is not the most efficient way of finding the cable (see Figure 16), and
asks what is the length of the shortest trench which will find the cable
(assuming that the cable is straight and does pass within 2 meters of the
marker). ’

The following mathematical problem arises: what is the shortest curve
which meets all the lines which meet a given circle (or even more generally,
any convex set)? Of course, the answer to this question may depend upon
our definitions of the words “curve” and “length”.

DEeFINITION. Let S be a Borel subset of a metric space M. The length of
S is the 1-dimensional Hausdorff measure of S, A(S)= 4,(S), where the
a-dimensional Hausdorff measure of S is defined by

4,(S) = lim (inf { Z (diam E)*| U E; =S and diam E, < § for all i}).
60 i=1 i=1

We shall mainly be concerned with the case M = R".

DEFINITION. A path is a continuous function f: I — R", where I = [0, 1].
The path length of f is

a(f) =sup { ¥ |f G+ 1ym)—fim)| In =1, 2, ...
k=0

DEFINITION. A path fis closed if f(0) = f(1). A path fis simple if fis 1-1
on (0, 1).
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PROPOSITION. (1) For every path f we have A(fI) < a(f).
(i) If f is a simple path, then A(fI) = a(f).
DEerFINITION. An n-path is a sequence C = (f;, f3, ..., f,), where each f; is

a path. Its n-path length is a(C) = } a(f).

i=1
For any sets R, S S R? we write:
P(R, S)<>(every line meeting R meets S).
con § = (the convex hull of §).
¢S = (the boundary of S).
int § = (the interior of S).
A path f is convex iff fI1 < dconfl. f|X denotes the restriction
of fto X.

2. Discussion of results. Most of the paper is devoted to proving
(Theorem 7) that a shortest path which meets (i.e., whose image meets) all the
lines which meet a given compact convex set is one-to-one. We then show
(Theorem 8) that the shortest path which meets all the lines which meet the
unit circle C has path length t+ 2 (Figure 16). We have not succeeded in
proving that this path yields the shortest (in terms of Hausdorff length)
closed connected set S satisfying P(C, S); see Conjectures 1 and 2. We do
not even know if it is enough to consider a bounded set in the plane in order
to find the shortest 2-path which meets all the lines which meet the unit
circle (see Conjectures 3 and 4).

A similar problem is: Does there exist a closed set S S R of minimal
area (that is, 2-dimensional Hausdorff measure) which intersects every line
which intersects the unit sphere?

R. Laver found the following example: For every ¢ > 0 there exists a set
S with the above property, the area of which is less than 2n+4n? +¢. His set
S consists of the lower hemisphere (of area 2m) plus vertical rings standing on
the surface of the sphere. The first ring stands on the equator, the second
ring stands on the circle formed by the intersection of the plane of the top of
the first ring and the sphere, etc. The last ring extends to the height of the

n/2

north pole. (See Figure 0. Since | 2m cos ad(sin a) = 3 n?, it is clear that if
0

the consecutive rings are narrow enough, then their joint area is less than

1 n?+e. It is also clear that every line which intersects the sphere intersects S.
We do not know if there exists a surface of area 2rn+3 n®> with the requisite

property.

3. Computation of lower bounds. Consider the projection function =,
which projects each point (x, y) in the plane onto the line L, through the
origin and making an angle 6 with the x-axis, that is,

me(x, y) = x cos B+ ysin 6.
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Fig. 0

THEOREM 1. Let f be a path. Then
| a(my £)dB = 2a(f).
0

Proof. Simple computation shows that this formula holds if f is a line
segment. Let | f,} be a sequence of polygonal paths with vertices on fI whose
limit is f. The result follows from the facts:

lima(f) =a(f), imnyf,=mn,f, lima(ngf,) =a(mef)
and the monotone convergence theorem.
Remark 1. In [6], p. 124, this theorem is attributed to Cauchy. Also
see [7] and [8].
COROLLARY. Let S be a connected compact set and let f be a simple closed

path such that fl = ¢ con S. Then [ has smallest a(f) among all closed paths f
with P(S, fI).

Proof. Since f is closed,
a(ng f) = 2A(mg ).

Since P(S,fI), A(mgf) = A(meS). Thus a(mgf) = 24(neS) = 24(mg con S)
= a(my ¢ con S). Hence

2a(f) = {a(my f)dB > [a(myd cos §)dO = 2a(0 con §),
0 0
and so a(f)=a(dconS).
THEOREM 2. (See [8].) Let S be a closed set. Then

[ 4(n5)d0 < 24(5).

Proof. If A(S) is infinite, there is nothing to prove. We suppose 4(S)
is finite. By Theorem 1, the inequality holds if S is the countable union
of rectifiable simple paths. By [1], p. 304 and 324, and [2], p. 357,
§=8,uS,uS; with A(n,S,)=0 for almost all 6, A(S,)=0 and



252 V. Faber, J. Mycielski, P. Pedersen

S, S U fif with a(f;) < oo for paths f;. For each £ > 0 and for each i, we

<o

can find simple paths f; with A(f;I) < oo such that fInS< |J) f;I and
. . j<w
MU f;1-S)<e/2. Let T= U f;I. Then S;ST, A(n,S,) =0,

J<w <o

A(T-S) <¢ and
j Ao 8)dO < | A(m, T)dO < 24(T) < 2(A(S)+e).
0

CoroOLLARY. Let S = fI, where f is a convex szmple closed path, and let S,
be a closed set. If P(S, S,), then

A(Sq) = 3 A(8).
Proof. Since P(S, Sy), A(nySo) = A(myS). Since f is a convex simple
closed path, a(ny f) = 2A(nS). Thus
2a(f) = [alme f)d6 = [22(1,5)d6 < [ 22(nSo)d6 < 4A(So),
1] (1] 1]

and so § A(S) =4 a(f) < A(Sy).
Remark 2. For each ¢ > 0, there exists a convex simple closed path f
and a path g such that P(fI, gI) and a(g)/a(f) < 1+¢. See Figure 1.

Fig. 1

4. Existence. In our proof of Theorem 5, we shall have to apply the
following theorem of Golab [3] which depends on former work of Wazewski
[11]. We first recall the definition of Hausdorff® metric in the space of
compact subsets of a metric space M.

DerimniTioN. For each pair of non-empty compact subsets, P, Q S M,
d(P, Q) = inf {n| each of P and Q lies in the n-neighbourhood of the other].

THeoreMm 3. If K,, K,, ... is a sequence of continua (compact connected

sets) in a metric space M which converges in Hausdorff’ metric to a continuum
K, then

A(K) < lim inf A(K,).
This theorem has been generalized by Vituskin [10] (see also [4]), but
this generalization is not needed here. Concerning the proof of the theorem,
that of Golab and Wazewski is complicated and Vituskin’s stronger result is
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still harder. However, before we knew the above references we found a simple
proof of Theorem 3. Then Roy O. Davies found a gap in our proof but also
showed us how to correct it (and gave us the above references). For
convenience of the reader, this simple self-<contained proof will be presented
here. '

First we need a theorem of Wazewski [11].

THEOREM 4. If K is a continuum and A(K) < oo, then K is arcwise
connected.

Proof. A well-known theorem (see, for example, [S], § 45, II) asserts
that every complete connected and locally connected metric space is arcwise
connected. Hence it is enough to prove that K is locally connected. Suppose
to the contrary that there exists a point pe K and an r > 0 such that the ball
B(p, r) = {xe K| d(x, p) <r} does not contain any connected neighborhood
of p. We can assume that r <} diam K. Hence for each n there exists a
component C, of B(p, r) such that p¢ C, and C, intersects the ball B(p, 1/n).
Hence diam C,>r—1/n and the sequence C,, C,, ... contains infinitely
many disjoint sets. Hence A({JC,) = co, contrary to the assumption that
A(K) < . :

LemMa 1. If K is arcwise connected and F = K is a finite set, then there
exists a tree T (a finite union of arcs which is connected and does not contain
any simple closed curve) such that F < T S K.

Proof. This is an easy induction on the number of points in F.
LEMMA 2. For every tree T with A(T) < co and every 6 >0, T can be

covered with continua (subtrees) S!, ..., S™ such that
(1) 2 diam §* < ZA(S)) = A(T);
(2) diam §'<é fori=1,..., m;
(3) m< 2A(T)/6+1.

Proof. If diam T <4, then m=1 and S' = T. Now suppose that
diam T > §. Fix a point reT to be regarded as a root of T. For any two
points p, ge T, let A(p, q) be the (unique) arc in T with the ends p, g. Choose
eeT (an end) such that A(A(r, ¢)) is maximum. Then A(A(r, €)) > 39,
because otherwise diam T < . Let r' € A(r, e) be the (unique) point such that
A(A(r, ¢)) = 16. The part of T “above” r' is a tree S' of diameter <4 and
length > 34. Also (T\S')u {r'} is a tree T'. Similarly in T' we choose S?,
and so on, until say S™! leaves a tree T™~ ' of diameter < & which we call
S™. Then properties (1) and (2) are obvious and (3) follows because
A(S) =46 for i=1,...,m—1 and hence by (1), (m—1)45 < A(T).

Proof of Theorem 3. We can assume without loss of generality that
A(K,) < oo for all n. We choose finite sets F, < K, such that F,—» K in
the Hausdorfl metric. By Theorem 4 and Lemma 1, we choose a tree T, S K,
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such that F, S T,. We can assume without loss of generality‘ that A(T)—t
for some t. Of course, it will be enough to prove A(K) < ¢ or, equivalently,
that if A(K) > a, then t > «. Choose 4 > 0 such that

4 X diam E; > a,

for every covering E,, E,, ... of K with sets of diameters < 4. Now perform
the decomposition S}, ..., S™™ of T, given by Lemma 2. Since A(7,) -t and
(3), we see that the numbers m(n) are bounded. By choosing a subsequence
we can assume that they are all equal, say m. By choosing subsequences
again we can assume that the sequences S}, S5, ... converge to some S’ for
i=1,2,...,m Of course, S' U...uS™ =K and diam §' <, by (2). Hence
by (4) and (1)
a < X diam S; = lim X diam §!, < lim A(T;) =1,

SO a <1t as required.

THEOREM 5. Let n be a positive integer and B a compact connected set in
R*>. If S < B and S is compact, then there exists a compact set S™ with at most
n connected components such that P(S, S™) and

A(S™) = inf {A(So)l So S B, P(S, So), So compact with at most n
connected components).

Proof. The set K = (S, < B| P(S, Sy), S, compact with at most n
connected ceomponents} is compact in the space of compact subsets of R?
with HausdorfI" distance. Hence there exists a sequence S;eK (i=1,2,..)
such that lim A(S;) = inf {A(S,)| SoeK]. {S;} has a convergent subsequence
{S,). Let 8™ = lim S,. Then P(S, §'”), S has a most n components and

= x

by Theorem 3
A(S™) < lim A(S,) = inf {A(So)l SoeK}.

Added in proof. We have recently proved a refinement of Theorem 5
which will appear in the American Mathematical Monthly.

CoROLLARY. There is a shortest connected closed set which meets all the
lines which meet a given compact set S.

Proof. Take B to be a sufficiently large disk with center in S. Then
Theorem 5 easily yields the corollary.

THEOREM 6. Let n be a positive integer and B a compact connected set in
R2. If SSB and S is compact, then there exists an n-path S™ such that
P(S, S™) and

a(S"™) = inf {a(So)l So S B, P(S, So), So an n-path}.

The proof is similar to the proof of Theorem 3.
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CoROLLARY. There is a shortest path which meets all the lines which meet
a given simple closed path.

5. Computation- of minimum path.

THEOREM 7. Let [ be a shortest path which meets all the lines which meet
a given convex compact set S. Then f is one-to-one.

We shall need several lemmas.

LemMa 3. For all connected sets S, P(S, con S) and P(con S, §).

LEMMA 4. If S and S, are connected sets, then P(S, S,) if and only if
S S con §,.

The proofs of these lemmas are easy and we omit them.

From now on, assume f and S satisfy the hypothesis of the theorem.

LEMMA 5. If f(t,) = f(t;) and f] [t,, t,] is not a closed line segment, then
Sf@t)edconfl and f| [t,, t;] is a simple convex closed path. If f| [t,,t,] is
a maximal (in fI) closed line segment, again we have f(t,)€? con fI.

Proof. Suppose f(t,) = f(t,) with t; < t,. By continuity, for every ¢ > 0
there exists an € > 0 such that 0 <t;,—e¢ <t;+¢e<t,—e <1 and such that
Slty—e, t,+¢] and f[t,—e¢, t,+¢] are contained in C,(f(t;)) = C,(f(t,)), the
disk of radius ¢ with center f(r,) =f(t,). Suppose f(t;)eint con fI. Ttzn
there exists a g such that C,(f(t,)) < int con fI. Clearly fis a line segment on
[t,—e, t; +€] and [1,—¢, t,+¢]. As short a path as f with the same convex
hull is formed by (see Figure 2)

Fig. 2
SO tef0, 1, -],
f*(0) = St —e) f(t;—¢)’ , tefty—e, t,],
") reverse of f| [t,, p—e], telty, 1],
1), te(t,, 1].

2 — Annales Polonici Mathematici XLIV. 3.
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This path is shorter than f unless f[t, —¢, t;] U [t,—¢, t5] is a line segment.
Similarly f[t,, t; +€]u[ts, t;+€] must be a line segment. Thus f(t, —¢)
=f(t,+¢). Now either f(r; —¢) is on the boundary of confI or we can
continue this process. In any case, we reach a point f(s,) = f(s,) with s; <1,
<ty <s, with f(s;) on the boundary of confI. Thus f(s;) is on the
boundary of con f[s,, s;] and so f| [s;, s,] must be the shortest closed
curve meeting all the lines which meet con f[s,, s,]. This contradicts the fact
that f is not simple on [s, s,] unless f| [s,, s,] i1s a closed line segment.

Suppose f(t;)¢ 3 con fI. Then the same proof shows that f| [¢,, t,] is
either a simple convex closed path or a closed line segment.

LemMa 6. If s€(0, 1) there exists t, < s <t, such that either f is simple
on [t,, t;] or f| [ty, t2] is a closed line segment one of whose is f(s).

Proof. If not, for every € >0, f| [s—e,s+¢&] is not 1-1 nor is it
a closed line segment. If t, <s <t, with f(¢t,) =f(t;), then the theorem
follows by Lemma 5. Thus for all ¢t; < s there does not exist ¢, > s such that
f(t,) =f(t;). We may assume without loss of generality that, for every ¢ > 0,
f| [s—e¢, s] is not 1-1 nor is it a line segment. Suppose for every n there
exists x,e(s—1/n, s) such that f| (s—1/n, s) is not 1-1 at x,. Then for all x,
there exists y,e(s—eg,, s) such that f(x,) = f(y,) with lime, = 0 and (we may
assume) x, < y, <s. (We may assume f| [s—e¢,s+¢]is 1-1 at s, for if t > s
with f(t) =f(s), then by Lemma 5 either f| [t, s] is a closed line segment or
f| [t, s] is a simple closed path and hence there cannot exist t'e(t, s) such
that f(t') =f(s).) By continuity and the fact that f| [s—e, s+¢] i1s 1-1, we
may assume that f[x,, s] does not meet f[x,_,, y,—1]- Since the sequence
{f(x;)} lies on the boundary of con fI by Lemma 5, so does f(s). Note that
for alliand n > 2, con f[x;, ¥i+a) R fIx;, y;] for all i < j <i+n, otherwise f
could be shortened by the removal of f| [x;, y;]. Let L; be a tangent to
con f1 at f(x;). If L is a tangent to f[x;, ¥;] and f[x;+ ., ¥i+.] such that these
two paths are contained in the figure bounded by L, L; and L, ,, it must be
the case that L meets f[x;, y;] at least twice for all i <j < i+n (see Figure 3).
Since f has finite length, lim a(f| [x;, ;1) = 0. We choose a subsequence

i—»®

Li+n

Fig. 3
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Xi,» X X;,0f {x;} such that a(f] [xi,,> ¥i,.,)) is less than the diameter of
J{xiy, ¥i,J,j =1, 2. Now without changing con fI we can delete f[x,,, y;,] if
we replace f[x;,, yi,] by f[x;,, ¥;,] (see Figure 4). This contradiction proves
the lemma.

LEMMA 7. The path f is at most two-to-one. In addition, excluding a finite
number of intervals on which f is a closed line segment, f is not 1-1 at most
Sfinitely many points.

”""2’ f(x;3)

f(x!,)

Fig. 4

Proof. If s, <s, <s, with f(s,) =f(s;) =f(s3), Lemma 5 shows that
S| [sy, s3] is a closed line segment. Thus f is at most two-to-one. Suppose
there are infinitely many points, not elements of intervals on which f is
a closed line segment, at which f is not 1-1. Then there exists an s and
monotone sequences {s;} and {t;} of such points such that s = lims; and f(s;)
=f(t;). Of course, t =lim¢; exists and f(s) =f(¢). If s=¢, Lemma 6 is
violated. Repeated application of Lemma 5 shows that f| [s, t] is a simple
closed path and for all i, [s;, t;] & [s, t] and [s, t] & [s;, ¢;]. Thus without
loss of generality (by taking subsequences) we may assume that
§ < Sjpq <S<t; <t;,, <tforall i We now produce a path f with the same
image as f as follows (see Figure 5):

f on [0, s],
f=< reverse of f on [s,t],
f on [t, 1].

But now the t; are transformed into f; with lim¢=s and s<t,, <t.
Thus f is not 1-1 in a neighborhood of s, contradicting Lemma 6.
Suppose there are infinitely many maximal intervals on which f is
a closed line segment. Then without loss of generality there exists a sequence
of intervals {[s;, t;]} such that fis a maximal closed line segment on [s;, ¢;],
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f(s)=1(t)

Fig. 5

t; < 5;4, for all i, and s = lims; and t = lim¢,; exist. Clearly s =t and thus
Lemma 6 is violated.

LEMMA 8. Let s, be the smallest such that there exists s, # s, with
f(sy) =f(s;). Then s, #0 and s, #1, and t¢[s;,s,] implies that
J ()¢S 51, 521 ‘

Proof. Suppose s, =0. One of the extreme tangents to f[O0, s,] per-
pendicular to a tangent at f(0) can be used to produce a shorter path (see
Figure 6) unless they both coincide with the path f| [0, s,]. In this case, f|
[0, s,] is a closed line segment and f can be shortened by eliminating an
initial subpath. Hence s, # 0. Similarly, s, # 1.

£(0) = f(s,)

Now by Lemma 7, there exists an &> 0 such that for every
x€[sy, S2+¢€], f(x) =f(x) implies that x = x'. If f(s,+¢&)eint con f [s,, 5,1,
then f| [s,, s,+¢] is a line segment. It is easy to shorten f as in Figure 7.
Thus f(s,+¢)¢int con f [s,, s,]. Let P be a point on f[s,, s,]. Let A and B
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fls; )= flsp) TANGENT

TOCON (I

t(0)

Fig. 7

be points on a tangent to f[s,, s,] at f(s;). Since f[O, s;] lies outside
con f [sy, s,], there exists u <s, such that f[u, s,] is contained wholely in
either ¥ Af(s,)P or ¥ Bf(s;)P. We assume the first. Then we must have

J(s3+¢€)e X Bf (sy) P since all the other cases can be eliminated as in Figures
8 (a) and 8 (b).

A f(s|) B TANGENT A f(sl) B8 TANGENT
flsatel 5

flu) f(sa+E)

(a) (b)
Fig. 8 (a) Con f[s,, s;+¢) 2 [, 5,]; (b) Con f[u, 5512 f[s;, 52+¢)

Suppose there are t; and t, such that s, <, <s, <t, and f(t;) = f(t,).
Then f(t,)€d con f1 and the same proof as above shows that we have Figure
9 (a). Since s, #0, then there is an &> 0 such that f[s,,s;+e]u
U fls,+¢, 5,1—{f(sy)} Sintcon fI, in which case the shorter path in
Figure 9 (b) is used. The contradiction proves the lemma.

Proof of Theorem 7. Let s, and s, be as in Lemma 8. Let J
=[s,, 5,] and let g =f|J. Let T be a tangent to con fI at P = f(s;). Let L
be an extreme parallel to T with respect to con gJ. Let Qe Ln.gJ. Let A and
B be points on T such that P is between them We know that for some
e>0, f[s1 g, 5;) i1s on some side, say A, of PQ and f(s,;, s, +¢€] is on the B
side of PQ We now show that for all t > s,, f(f) is not on the A snde of PQ
and for all t<s,, f(t) is not on the B side of PQ Sup-
pose to the contrary that tr > s, such that f(r) is on the A side of PQ
Let R = Pf(r) N{gJ — | P}) (see Figure 10). Since the part of g which goes
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— _
Tangent 7 Aflsi)=Tisg) ——

f(fl) = f(fz)

(a) ' (b)

Fig. 9

Fig. 10

from R to Q to P is interior to con fI, it must be a line segment,
a contradiction. JN

Now consider parallels to PQ through f(0) and f(1). Let R and S be the
points where these parallels meet 7. We know we cannot have R and S on
the same side of P. We eliminate g as follows: We add to fI—gl certain

pieces of gJ, W(O) and ‘S_f.(l) in order to insure that the new path meets L
in passing {rom its beginning to s, and from s, to its end. Thus if f(0) lies
between L and T we add the pieces of the segment from f(0) to L on E}"’ (0)
which lie inside or on gJ and the parts of gJ which lie on the A4 side of PQ.
Similarly, if f(1) lies between L and T; otherwise we take just fI—gl (see
Figure 11). Clearly this new path f* has the same convex hull as f, and f* is
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shorter than f unless f(0) and f(1) are on T and g is a closed line segment.
In this case (see Figure 12) there exists an ¢ such that f[s;—e, s; +¢]
S Af(0) f(1)Q. Then substituting the line segment f(s, —¢)f(s, +¢) for
S sy —¢, sy +¢&] shortens f, a contradiction.

Fig. 11

Fig. 12

THEOREM 8. A shortest path which meets all the lines which meet the unit
circle C has length n+2.

Proof. Suppose f is a shortest path. Then con fI 2 C. We know [ is
1-1. Thus fIn¢dcon fI consists of a collection of non-intersecting simple
paths {C,}. Each simple path has a direction (inherited from f) and initial
and terminal points (which may be equal when C, is a single point). The
remaining pieces of f, that is, fI—|) C,, must be non-intersecting line
segments. Suppose S is one of the segments in fI—{J) C,. If the ends of § are
A and B, then the circle must lie between the tangents to con fI at 4 and B.
If S does not cut the circle in two places, S must be contained in ¢ con f], a
contradiction. Thus § divides the circle into two parts and confI into two
parts. We consider a part of con fI which contains a smallest part of the
circle. Let P be the endpoint of f'in this part. We may assume without loss of
generality that S has been chosen such that A4 is between P and B on fI and
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that the part of f which runs from P to A4 is one of the C,, say C, (see Figure

13). Clearly PB must be tangent to the circle at some point R, otherwise C,
can be shortened while retaining C < con fI.

Fig. 13

Let O be the center of the circle, A’ be the point on AB and C nearest
to A,Q=AP~C, and a= XA'PB, f= ¥xPA'B and y= ¥ A4'BP. If
PB < A’'B, then we may replace C, v AB by the shorter path C,u PB. Thus
a < fB. Since y<n/2, f=n/4. Now, by way of contradiction suppose
¥ QOR < n/2. Fixing A" and moving Q toward A’ along C increases  and
decreases a; so the maximum f occurs when ¥ QOR = n/2. Fix A A’ PR so
that ¥ QOR = 1/2 and increase B to the maximum by moving B along PR.
The maximum f is attained when O is on A'B since we are dealing with at

most a semi-circle on the P side of AB. In this case, B = a (see Figure 14)
which is a contradiction. Thus X QOR > n/2.

Fig. 14

Let OX be a ray perpendicular to @ meeting the circle at X and C, at
T. Let V=0ANnCy, let Z=A'XnPB, and let Y be the foot of the
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perpendicular from X to PR (see Flgure 15). Now £ZA'B< ¥ XA'0
= X A'XO = £ A'ZB, so YB <ZB < A'B. We denote the shortest path
from D to E along the path C by C[D, E]. It is easy to show from the
corollary to Theorem 1 that a(Co[A4, T]) = a(C[A4', X]). Since a(Co [T, P))

> XY, a(Co)+a(S) = A4’ + A'B+a(Co[A, TH+a(Co[T; P)) > AA'+YB +
+a(C[4, X))+ XY=AA+2+RB+a(C[A,X])> AA' +r/2+ RB+a(C[A4,X])
— A4’ +RB RB+a(C[4, R]D. It follows that f can be shortened by sub-

stituting AA' U C[A, R]u RB for Cou AB while retaining C < con fI. This
contradiction shows that fI—{j C, = (), and thus that f is convex. It is now

easy to show that f must be a semi<ircle with two radii attached (see
Figure 16).

Fig. 16

Conjectures. 1° The shortest connected compact set meeting all the
lines which meet a segment of a circle is a path;
2° The shortest connected compact set meeting all the lines which meet

a triangle or square is the shortest connected compact set meeting all the
vertices.
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The problem of finding the shortest connected compact set meeting all
the vertices of a convex polygon is surveyed in [9].

6. The disconnected case.

CoNJECTURES. 3° (see Section 4). Let S be a compact set in R2. There
exists a bounded set B containing S such that for each compact set §; such
that P(S, S,) there exists a compact set S§ S B such that P(S, S§) and
A(88) < A(So).

4° The shortest closed set S meeting all the lines which meet the unit
circle C has two components and has length

A(S) = 4.818924 . ..

Remark. Conjecture 4° is derived as follows. Four points P,, P,,
P5, P, are placed on the unit circle with center O. Let L; be the tangent to C
at P;,. Let xP,OP, =20, ¥xP,OP, =28 and & P, 0P, =2y. We suppose
2y <m and that L, and L, meet at P, L, nL, = {Q} and L,nL; = (R}
(see Figure 17), but note that P,, O and P; do not necessarily lic on a
straight line. We let S(«, 8) = (part of C from P, to P, not passing through
P,)UQP,u RP; u(altitude of A PQR). Now

A(S(a, B, 7)) = 2n—(2a —tan a)— (2 —tan f)+

+ (tan o +tan y) (tan f+tan y) sin 2y
[(tan «+tan y)*+(tan B+ tan y)*+2(tan a+tan y) (tan B+ tan y) cos 2y]"'/?’

We conjecture that the absolute minimum of A(S) is reached when « = f but
we have been unable to verify this. Assuming that a = 8, then ci/dy =0
= (A/Ca yields

(*) 2cos 2a =siny, cos y+tan a+sin y(sec2y+1) =2,

whose simultaneous solution is a, =~ 36.855833° and y, = 34.121111°. We
have chosen A(ag, @4, 7o) in Conjecture 4. Added evidence that this is indeed

Fig. 17
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Fig. 18

the minimum 4 is given by the fact that di(a,, f§, y0)/df = 0 when B = a,.
We note, however, that if «; and y, do not satisfy (*), then

dA(ay, B, y)/df #0 at f=a.

The method used to derive Conjecture 4 is an off-shoot of an earlier
conjecture we had about the minimum A(S). At that time we thought
(Platonic inspiration) that the best possible S was the closed set derived from
the regular circumscribed pentagon as illustrated in Figure 18 (a =8 =1y
=36°) but it has length A =%n+2tan $n(l+singn)=4.82046115... In
fact, the minimum of A(x, a, a) 1s 4 = 4.820427351... at ~ 35.8585677°.
Other short closed sets S derived from circumscribed regular polygons are
illustrated in Figure 19. The generalization of our method, suggested by
Figure 19, to n points on a circle (n = 5) looks extremely hard to handle and
we have made no attempt.

(a) (b) (c)
Fig. 19 (a) $n+./3+1 > 4.82644591 ;
(b) $n+2 tan $n(1 +sin n+sin 3n) = 4.82685813 ;
(c) 3m+2 tan (1 +sin §n+sin n+sin ) ~ 4.85280026.

Acknowledgement. The authors are indebted to Roy O. Davies who
improved our earlier proof of Theorem 3 and to R. Laver whose example is
given in Section 2.
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