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ON CATEGORY-RAISING AND DIMENSION-RAISING
OPEN MAPPINGS WITH DISCRETE FIBERS

BY

ROMAN POL (WARSZAWA)

1. Introduction. In this note by a space we mean (unless the other
is explicitly stated) a metrizable space, and by the dimension we understand
the covering dimension (dim). Our terminology and notation follow
those of [5]; in particular, w(T') stands for the weight of a space T, |4]|
for the cardinality of a set 4, and N for the set of natural numbers.

Kuratowski [11] proved that if f: § — T is an open mapping of a
separable space 8 of first category onto a space ' and each fiber of f
is a space of second category, then 7' is of first category. Aleksandrov
proved that if f: § — T is an open mapping of a separable space 8 onto
a space T and each fiber of f is not dense in itself, then dimT < dimS8
(for the references and some related results see [2], Section 3, gnd also
(21}, (7], (4], (1], and [15]).

In both theorems the assumption of separability of 8 can be relaxed
to the assumption of separability of the fibers of f (the proofs are simple
combinations of those of Kuratowski and Aleksandrov with an idea of
Hansell [6])(}). One can also show (Section 4.2) that if w(T) =N,, then
both theorems remain valid if we assume, instead of separability of S,
that f takes o-discrete sets to o-discrete sets. In another direction, the
condition that the fibers of an open mapping f are uniformly complete
guarantees that f does not raise the category (see Section 4.3); this condi-
tion together with the assumption that the fibers of f are scattered yields
that f does not raise the dimension. _

However, in general, it is easy to show that none of the assertions
remains true in the non-separable case (2), even if f is “very scattered”;
in fact, every first-countable T,-topological space is an open image of

(*) A similar situation occurs if one considers the classical theorem of Mazur-
kiewicz [12] on the extension of open mappings defined on separable spaces over
Gs-sets (see the Remark in Section 4.1).

(3) This is also the case of the theorem of Mazurkiewicz mentioned in foot-
note (1).
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a o-discrete metrizable space under a mapping with discrete fibers (Sec-
tion 2.1). Here w(8) = |T|, so in many interesting situations one cannot ex-
clude the case (without the generalized continuum hypothesis) in which
w(8) is much greater than w(T). To avoid this defect we give in Section 2.2
another general construction (for metrizable spaces only) which yields,
in particular, an example of an open mapping f: 8§ - T with discrete
fibers, which maps a space § of weight ¥; onto a separable 1-dimensional
(even connected) space 7. By this construction we can also obtain a
category-raising mapping of this kind of a space of weight X, (by Martin’s
Axiom, in such an example the range of the mapping should be also of
weight X,;). In Section 3 we give another, “essentially non-separable”
construction which, if we do not require 7 to be separable, gives more
exact results. In particular, it allows to show that every space T' which
is non-separable at each point is an image of a first-category space 8 =« T xT
under an open mapping with discrete fibers; in fact, the mapping is the
projection.

Roughly speaking, we give in this note three different constructions
which allow, under relatively weak assumptions, to represent a given
space T as an image of a space S under an open mapping f: 8 — T with
discrete fibers. The space 8 is loosely built from small (in the sense of
category or dimension) pieces of the space T' and, moreover, we require S
to be, if possible, closely related to T.

The author is grateful to Professor R. Engelking for valuable com-
ments #n the subject of this note.

2. In this section we give two methods of construction of category-
-raising and dimension-raising open mappings with discrete fibers (cf. [20]
and [14], p. 337).

2.1. THEOREM 1. Every first-countable T',-topological space T 1is an
open image of a o-discrete metrizable space S under a mapping with discrete
fibers.

Proof. Let B(T) be the countable product [[ T,, where T, is the

neN
set T considered with the discrete topology; given a finite sequence

(tiy ..., 1) € T" we put
By,..1, = {(w) € B(T): u; =1, for i < n}.

For every point ¢ € T choose an open descending base V,(t) o V,(t) > ...
at t. We define the space 8§ < B(T) as follows:

A sequence (t,,1t,,...) € B(T) belongs to 8 if

(i) t, e Vi) ... NV, (t,-,) for every m e N;

(ii) if ¢, =1,,,,, then t;, = ¢, ; for every j < m;

(iii) there exists an ¢ such that ¢, =1, ,, for every m e N.

The mapping f: 8 — T is defined by f(t,,1%,,...) =1;, where ¢, is
as in (iii). '
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The space S is o-discrete (by (iii)) and the mapping f is onto (since
(t,t,...) €8 for every t e T). '

Fix a point p € 8. By (iii) and (ii) we can write p = (t;, ..., 4, t,,...),
where t; # t. Let us fix the sequence (¢;,...,%,?,...,t) of length m > k.
We claim that the following two inclusions hold:

V=Vit)n... "Vt )NV u(®)N\{t1y ..., 8}
< f(By,...400,..4N8) = Vi (2).

The second inclusion follows from (i). To prove the first one it is
enough to observe that for a point » € V we have

q == (tl, "”tk’ t’ ...,t’ 'v, 'v, ...)EBtl,._ --,tnS alnd f(q) = 9.

'ntk"r

Thus we have shown that the mapping f is open.

Finally, by (iii), B,l,__,,,k,,r\f"‘(t) = {p}, which proves that the space
f7Y(t) is discrete.

In particular, the unit real interval is an open image of a o-discrete
space 8 under a mapping with discrete fibers. Observe that in this case &
is of first category and dim8 = 0.

Although the above-given construction is very simple, it is not quite
satisfactory: here w(8) = |T|, and hence in many cases we have w(S8)
> w(T). For example, without any additional hypothesis from the set.
theory it does not answer the question whether there exists a category-
-raising or dimension-raising open mapping with discrete fibers which
is defined on a space of weight N,. The desired examples can be obtained
by another general construction described in the next section.

2.2, THEOREM 2. For every space Y amd a cardinal m > w(Y) the
following conditions are equivalent:

(&) there exists an open mapping f: X — Y with discrete fibers, which.
maps a 0-dimensional space X of weight less than or equal to m onto Y;

(b) ¥ = Jx, where o is a family of closed 0-dimensional subsets
of Y of cardinality || <m(3).

Proof. The implication (a) = (b) follows immediately from the
argument of Aleksandrov (see [2], the proof of 3.7), where a base of X
of cardinality m is to be considered instead of a countable base.

Assuming (b), we shall describe a construction of a space X and a
mapping f: X — ¥ as in (a).

(3) Note that if a separable space T is the union of less than 2% compact subspaces
of dimension not greater than =, then (under Martin’s Axiom) dim 7 < n. This follows
easily from the topological form of the axiom (see [9]) and the classical embedding
theorems of Hurewicz [8], Chapter V,6 (see also [3], [16] and [8], Chapter VII); cf.
Corollary 1.
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Let B(m) be the countable product of discrete spaces of cardinality m
(cf. [6]). Fix a metric on Y and on B(m); by B(M, ) we denote the e-ball
around a set M with respect to a given metric.

Let U be an open set in B(m), A ¢ U a nowhere dense set, F c Y
a closed 0-dimensional set, and W an open neighbourhood of F. Finally,
let h : A — F be a homeomorphism. Any so defined system (U, 4, h, F, W)
will be called an admissible quintuple.

Given an admissible quintuple (U, 4, h, F, W) and a natural num-
ber n, let us proceed as follows:

(a) Split the space F into disjoint closed-and-open subspaces {F,:
8 € 8} such that diamF, < 2" and, for A, = h™!(F,), diamA4, << 27",

(b) Choose pairwise disjoint open sets W, W with F,c W,
< B(F,,27"). .

(¢) Choose pairwise disjoint open sets U,c U with A4,< U,
< B(4,,27") (cf. [5], 4.5.1).

(d) For every s € 8 choose a disjoint family %, of cardinality m of
open subsets of U, such that A, is contained in a member V, of #, (this
can be done as 4 is nowhere dense).

(e) Write
(K\F)ﬁW. = UL‘ Wit-h Ei = L‘,

where K runs over & and s over 8; let & be the family of all non-empty
L, and let &, ={Le% L c W}

(f) For every s € 8§ fix an injection L — U, of the set %, to the
set %, \{V,}.

(g) For every L e choose a nowhere dense subspace A; < U,
and a homeomorphism %, : A; — L (cf. [6], Theorem 7.3.15).

(h) Finally, put W, = W,\F for L € %,.

In effect, we obtain admissible quintuples (V., Ag, hy, L, W)
and (V,, A4,, hl4,, F,, W,), where Le% and 8 € 8. Observe that the
family {V,:LeZ}u{V,:8e8} is disjoint (as the family |(J#, is;

8e8S

cf. (¢) and (d)), and so one can define naturally a continuous mapping
Jg: E — Y of the union

E=U{4;:LegiuJ4,> 4,
seS

which agrees with h; or h on their domains. Call E the associated space
and fp the associated mapping.

We can pass to the construction of the space X and of the mapping
f: X - Y. At first, choose an open disjoint family % in B(m) of cardinality
m and fix an injection K — Ug of X into #. For every K € X . choose
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a nowhere dense subspace Agx c Ux and a homeomorphism hg: Ap — K
(cf. [5], Theorem 7.3.15). Finally, put Wy =Y. Let E, = | J{4g: K € X}
and let f, : E, — Y agree with hx on each Ax. Notice that f(E,) = ¥

We have the family {(Ug, Ag, hx, K, Wg): K € X} of admissible
quintuples. Apply to each one the construction (a)-(h) with » = 1. Denote
the union of the associated sets by E, and let f, : B, — Y agree with each
of the associated mappings on its domain.

Now, we have a new family of admissible quintuples. Repeat the
construction (a)-(h) for each of the quintuples with n = 2 and define
f:: By —> Y as above. Repeating this again and again with » =2, 3, ...
we obtain at each stage of the process a mapping f,: E, - Y. Put

X =B,

Since By < E, < ... and f;|E,_, = f;_,, we have the natural mapping
f: X - Y. We claim that f: X — Y is open and that the fibers of f are
discrete.

To this end, let us fix a point # € X. Let « € B,,, for some n; so there
exists an admissible quintuple (U, 4, h, F, W) defined at the n-th stage
of the construction, such that x € 4, for s € 8, where we adopt the notation
introduced in (a)-(h). Consider the neighbourhood U, of A4,; we claim
that f(U,nX) = W,. Indeed, by (e) and (g), f(U,NX)> f(U,NE,,,) > W,;
on the other hand, the inclusion f(U,nX) < W, follows from (h).
Now, diamW,<2 ™V by (a) and (b), and diamU, <2 """ by (a)
and (c¢), and thus, since » can be taken here arbitrarily large, f is continuous
and open at x. Finally, let us verify that « is an isolated point of the space
f'f(x). Indeed, by (h) we have

AU (XN4)NF, =0,

and so f~f(#)nU, = {#}. The proof is completed.

COROLLARY 1. There exists an open mapping with discrete fibers,
which maps a 0-dimensional space X of weight X, onto a separable, connected,
non-one-point space Y.

Proof. To apply Theorem 2 we need only a separable, connected,
non-one-point space Y which is the union of a family " of cardinality ¥,
of its closed 0-dimensional subspaces. Such a space Y can be obtained
by a modification of the celebrated Knaster-Kuratowski fan: it is enough
to replace in the construction given in [5], 6.3.23, the set P of the non-end-
-points of the Cantor set ¢ by a subset of C of cardinality N, which is
not an F,-set at each point of C (one.can take, for example, a subset of
cardinality N, of a totally imperfect set in C; see [10], § 40).

Since every space is the union of 2% closed 0-dimensional subspaces
(cf. [15], Chapter 3, 13-15), we have also
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COROLLARY 2. Every space of weight greater than or equal to 2% is an
open image of a 0-dimensional space of the same weight under a mapping
with discrete fibers.

By the argument of Aleksandrov, under Martin’s Axiom (cf. [9]),
if f: 8 — T is an open category-raising mapping with discrete fibers and T'
is separable, then w(8) = 2®. Also in Corollary 1 the space Y should
be of first category (cf. Corollary 4 in Section 3.1). Notice that if every
K € o in Theorem 2 is in addition a boundary set, then the space X —
constructed in the proof — is of first category. This allows one to use this
construction to obtain category-raising open mappings with discrete
fibers. However, the construction proposed in the next section gives,
if we do not require Y to be separable, much stronger results.

3. We assume that symbols «, § 7,4 stand for ordinal numbers.
This section is devoted mainly to the proof of the following result:

3.1. ProroSITION. Let X, c...c X, c ... X, where £< A, be an

inereasing sequence of closed boundary subsets of a space X such that
X = X,.
i<

Then there exists a subspace E = X x X satisfying the following condi-
tions:

(i) every space E, = {y € X : (v, y) € E} 18 discrete and non-empty;

(ii) the restriction to the space E of the projection onto the first awxis
18 open;

(iii) every set E* = {y e X : (y, «) € E} is contained in a set X, for
some &< A and the set {v € X : E* + O} is o-discrete.

From this proposition we derive two corollaries.

COROLLARY 3. Evwery space T non-separable at each point is an image
of a space 8 = T x T which is of first category under an open mapping with
discrete fibers.

Proof. By aresult of Stépanek and Vopénka [22] (cf. [19] for a simple
proof) there exists an increasing sequence 7', =« ... c T, c ...« T ({ < @)
of closed boundary subsets of T' such that

T=\JT..
é<w)

Now, putting in the Proposition X = T and X, = T, we obtain the
space § = E with the required properties.

COROLLARY 4. There exists a connected space T of weight X, which
18 am open image of a 0-dimensional space 8 = T x T under an open mapping
with discrete fibers; moreover, T cam be of second category at each point.

Proof. There exists a connected space 7, each non-empty open
subspace of which has the weight ¥, and every separable subspace of which
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is 0-dimensional (see [17], Example 2). Let {{,: a < w,} be a set dense

in T and let us write T, = {f,: a < £}. Let us put in the Proposition
X =T, X, =T, and 8 = E. From (iii) and the Sum Theorem we infer
that dim8 = 0, and so we are done by (i) and (ii). To prove that T can
be of second category at each point it is enough to replace M (S, C) by
T =M(C,S8)in Example 2 of [17].

3.2. In the rest of Section 3, X is a fixed space as in the Proposition.
Observe that without loss of generality we can assume that the sequence
{X,}:, satisfies also the following condition (cf. [18], p. 96):

(1) X, =[JX, for every limit &< A.

a<§

Indeed, one can put
X, =X,, and X,=1{JX, fora limit

a<é
and consider the family {X;}, as we have X; c X,.
It is easy to define inductively families ¥,, ¢4,, ... of subsets of X

and choose at every stage of the construction a point p(@) € G for every
G € ¢, in a way such that

(2) ¥, is an open disjoint family the union of which is dense in X and
diam@ < 1/n for every G e ¥,;

(3) 9,.. is a refinement of ¥,;
4) M,={p@:6:%}cU%,;
5) ifGe¥9, He%,  and p(G)e H, then p(G) = p(H).

Put
=% and M=UM,={»G):Ge9}.
n n

The following easily-verifiable properties of the construction will
be used in the sequel:

(6) ¢ is a non-archimedean family, i.c., every two members of ¥ are
either disjoint or one is contained in the other;

() M,c M,c ..., M is o-discrete and dense in X;
(8) £ G He¥% HcG and p(G)e H, then p(G) = p(H).
3.3. For every &< A put
9, = {G € 9:G is a maximal member of ¢ disjoint with X}
and let
9) E.={p@):Ge%}c M\X,.
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Notice that, by (6), every family ¥, is disjoint, so
(10). E; is. a discrete space.

Observe é.lso that (see (7), (2) and (4))
(11) M\X,c %,

3.4. For every £< A put P, = X,\|J X, and let

a<é

E=|JP;xE.cXxX.
é<a
Since for x € P, we have E, = E,, property (i) follows from (10)
and (11). Now, let # € X, i.e., v € X, for some ¢ < A. If y € E®, then, by (9),
(y,2) e P,xE, and a< § a8 E,NnX, =O; thus E* < X, which proves
the first part of (iii). To prove the second part observe that {r: E* 3 @}
c M, and so, by (7), this set is o-discrete. It remains to prove (ii).

3.5. Now we check two easy lemmas; in the first one we put ¥,= {X}.

LEMMA 1. Let He 9,, Hc Ge 9,_,, GNnX, #0, and p(H) ¢ X,.
Then p(H) € E,.

Proof. Since p(H) e M\X,, by (11) there exists a set U € ¢, with
p(H) e U. Now either U > G or U = H. The first possibility is excluded
because UnX, =@, so we have U < H and, by (8), p(H) =p(U) € E,.

LEMMA 2. If p e MNX, and V is a neighbourhood of p, then VNE, Q.

Proof. By (7), (4) and (2), there is an H e & such that pe Hc V.
Using again these facts we infer from MNnH = @ (cf. (7)) that there exists
a G e ¥ with GnX, =0 and @G ¢ H. Take a maximal member W of &
such that G <« W <« X\X, Of course, We ¥ and W c H. We have
p(W)eE,NnV.

3.6. Now we are ready to prove (ii). Let (»,y) e ¥ and let UX V
be an open neighbourhood of the point in X x X. Whenever we show that
there exists a neighbourhood W < U of the point # such that

(12) if WAP, # @, then E,nV + @,

the proof of (ii) will be completed, since (12) implies E,NV #@
for every y € W.

Assume that z € P,. Thus y € E,, and so y = p(H) for some H €G,.
Consequently, we have |

(13) y=pH),He9,,HcQec%,_,and HnX, = @, but GnX, #G.

Let us choose a neighbourhood W < U of the point « in such a way
that, for every a > &,

(14) if WnP, #0, then GNnX, # 0,
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This can be done as follows: if & =9+1, we take W = U\X,;
if & is-a limit ordinal, then, by (1) and (7), there exists an n << & with
GnX, #0, and W = X\ X, is the required neighbourhood.

Now, let WNnP, # . Then by (14) also GnX, #B.1f y ¢ X, then,
by (13) and Lemma 1, we have y € E,NnV; if y € X, then we use Lemma 2
to conclude (12).

4. In this section we give some conditions under which the assertions
of the theorems of Kuratowski and Aleksandrov mentioned in the intro-
duction hold in the non-separable case.

4.1. THEOREM 3. Let f: 8 — T be an open mapping with separable
fibers, which maps a space S onto a space T.

(a) If the fibers of f are spaces of second category and S is of first cate-
gory, then T is of first category (cf. [19]).

(b) If each fiber of f is mot dense in itself, then dimT < dim 8.

For the proof it is enough to repeat the arguments of Kuratowski
and Aleksandrov, respectively, where a countable base is to be replaced
by a o-discrete base, and to use the following lemma due to Hansell ([6],
Proposition 3.11).

LEMMA 3. Let f: 8 - T be an open mapping with separable fibers.
Then for every discrete family {K,: a € A} of subsets of 8 there exists a family
{Lin:a€d, neN} of subsets of T such that

f(Ka) = ULan

and for every n the family {L,, : a € A} i8 discrete.

Remark. This is a classical result of Mazurkiewicz [12] that if
f: X > Y is a continuous mapping of a completely metrizable (*) separable
space X to a space Y, then for every set A — X such that the restriction
flA : A —f(A) 18 open there exists a G486t B = X such that A = B and the
restriction f|B: B — f(B) i8 open.

As in the case of the theorems of Kuratowski and Aleksandrov,
the condition of separability of X can be replaced by the assumption
of separability of the fibers of f; for the proof we need only to replace
in the proof given' by Engelking in [5], 4.5.14 (a), a countable base by a
o-discrete base, countable families {U, . .} and {V, . .} by point-
-countable (uncountable) families {U, . ,} and {V, . ,} (which is
possible by Lemma 3) and, finally, to use Lemma 3 again in order to
verify that the appropriate sets are F -sets. Notice also that the assertion
of the Mazurkiewicz theorem is not valid in the non-separable case. The
following is a simple counterexample (cf. [10], § 30, X, Remark).

(4) The condition that X is complete can be relaxed to the condition that the
fibers of f are uniformly complete (see 4.3); the proof given in [5], 4.5.14 (a), works
also in this case without any change.
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Let I be the unit real interval, P and @ the sets of irrational and
rational numbers from I, respectively, and let T' be a discrete space of
cardinality 2%; let the family {C,:% e T} consist of all countable dense
subsets of P. Put

Y=I, X={to)eTxI:o¢C}cTxI, A=TxQ,

-and define f : X — Y by f(¢, #) = x. Choose any G,-set Bwith A c Bc X
and assume that f|B : B — f(B) is open. Then, by a theorem of Hausdortf
([6], 5.5.8 (d)), f(B) is a G,-set in Y, and thus there exists a O, < f(B).
Now, f({t} xInB) c f(B)\C,, a contradiction with the openness of f.

A modification of this example yields a space X of weight X,. Notice
also that from a theorem of Michael [14] and a theorem of Vainstein
{see [5], 4.5.13) it follows that if f is as in the Mazurkiewicz theorem, but X
is non-separable, then there exist G,-sets B o 4 and C o f(4) such that
f: B — f(B) = C is hereditarily quotient (here it suffices to use the argu-
ment similar to that in the example in Section 4.3). A result analogous
to the Mazurkiewicz theorem holds also for open-perfect mappings;
‘this follows from a result of Engelking (cf. [5], 4.5.13) and the Remark.

4.2. We say ([18], p. 100) that a mapping f: 8 — T preserves o-discrete-
-ness if f takes o-discrete sets to o-discrete sets. Of course, every mapping
with separable range preserves o-discreteness, and so does every open
mapping with separable fibers (by Lemma 3). Thus the following is another
improvement of the thcorems of Kuratowski and Aleksandrov (cf. also
Theorem 3).

THEOREM 4. Let f: 8 — T be an open mapping which preserves o-dis-
.creteness of a space 8 onto a space T of weight less than or equal to ;.

(a) If the fibers of f are spaces of second category and 8 is a space of
Jirst category, then T is of first category.

(b) If each fiber of f is mot dense in itself, then dimT < dim 8§.

The theorem follows immediately from Theorem 3 and from the
following

LEMMA 4. Let f: 8 — T be a mapping of a space 8 onto a space T
of weight less than or equal to N, which preserves o-discreteness. Then the
set C ={teT:w(f'(8) =N} is o-discrete; if f is in addition open, then C
18 open. '

Proof. Assume that the set C is not o-discrete. Then there exists
a set ¥ < C of cardinality ¥, which is not o-discrete, because either there
exists a separable uncountable subset of C or else [C] =N,. Let

2 =2,
be a base of S with each %, discrete. Put
(15) E,={teE:|{Be®, :f'(t)NB # B} =N,}.
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Since

E = | JE,,

n

there exists an E, which is not o-discrete. Now, using (15) and the fact
that |E,| =N,, we can choose for every ¢t € E, a set B, € #, and a point
8(t) e f~'(t)n B, in such a way that different sets B, are assigned to different
points t. The set A = {8(T) : t € B, } is discrete while its image E, = f(A)
is not o-discrete, a contradiction.

Now, let f be open. Take ¢ € C and assume that there exists a sequence
(z,) €« I\C with 2, —t. The space

¥ = JF )

is separable, and so the set W = S8\ F intersects the fiber f~!(¢). Thus
Sf(W) contains ¢ but not any #,, a contradiction with openness of f.

4.3. The following notion was introduced by Michael [13]: we say
that the fibers of a mapping f: 8 — T of a space S to a space T are unit-
formly complete if there exists a metric g, agreeing with the topology of 8,
such that every space f~'(t) is complete with respect to o.

One can prove that open mappings with uniformly complete fibers
do not raise the category (this was stated in [19], Remark 5 (b); a similar
fact was observed independently by E. K. van Douwen). Using Michael’s

theorem [13] one can prove also that if the fibers of a mapping f: 8 L o
are in addition scattered, then dimT < dimS; this follows from results
of Coban [4], Theorems 5, 6 or 7 (one can use also our Theorem 3). The
following counterexample shows that the condition that the fibers of the
mapping f are scattered cannot be relaxed to the condition that each
fiber of this mapping contains a dense discrete subspace.

onto

Let in Theorem 1 the space T' be the unit real intervalandletf: § —— T
with 8§ < B(T') (see the proof) be an open mapping with discrete fibers.
There exists a G,-set H < B(T) such that H > § and f extends to a con-

tinuous mapping f: H ~T over H. Put G = |J{f'(t):¢ €T}, where
the closure is taken in the space H, so G < H, and put ¢ = f|@. Now,

onto

g : @ — T is the required open mapping (cf. [2], § 6), since all fibers of ¢
are closed in the space H which is completely metrizable.

Added in proof. A result similar to Theorem 1 in Section 2.1 was
obtained by H. J. K. Junnila, Stratifiable pre-images of topological spaces,
in: Colloquia Mathematica Societatis J4nos Bolyai, 23. Topology, Vol. II
(1980), p. 689-703.
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