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ON SPACES WHOSE PRODUCT WITH EVERY LINDELOF
SPACE IS LINDELOF

BY

KAZIMIERZ ALSTER (WARSZAWA)

E. Michael asked whether the product X“ is Lindeltf provided that X
belongs to %, where £ is the class of all spaces whose Cartesian product
with every Lindeldf space is Lindeldf. In this note we present some remarks
concerning this problem.

One can view this note as an unsuccessful effort to solve Michael’s
problem in the negative way (see [1}-[3] for related problems).

In the sequel, I, Q, and N stand for the unit interval, the set of rational
numbers of the unit interval, and the set of natural numbers, respectively.
The symbols w and w, denote the first infinite ordinal number and the first
uncountable ordinal number, respectively.

If X is a Lindelof P-space, ie. every Gssubset of X is open, then X
belongs to .Z. Noble proved that the product X is Lindelsf (see [6]), so if
Michael’s problem has a negative solution, then one has to look for a
counterexample in a class of spaces which are very different from Lindelof P-
spaces. The class of Lindelof spaces in which every point is a G,-set is the
desired one.

It is easy to prove

PropPosITION 1. Assume that the Continuum Hypothesis holds. Then if
Z c I" and Z belongs to %, then for every countable S — I the space ps(Z) is
a-compact, where ps denotes the projection from I onto IS.

Proof. Suppose not. Let S = I' be a countable subset of I' such that
ps(Z) is not o-compact. Then P = IS\ps(Z) is not a G,-subset of IS. Let
{G,: « <w,} be a strictly decreasing sequence of G,-subsets of IS containing
P such that for every open P = U < IS there is a < w, such that G, < U.
For a < w, choose x,€G, N ps(Z) and x, # x5 if a # B. Then

Y=Pu{x,;: «u <w,)}

with the topology induced by sets of the form U u K, where U is open in IS
and K c pg(Z) is Lindelsf (see [5], Ex. 1.2). Notice that Y x ps(Z) is not
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Lindeldf since {(x,, x,): @ < w,)} is a discrete and closed subset of Y x ps(Z),
and this contradicts the fact that the continuous image of % belongs to %.

The main result of this note is the example which shows that the class of
Lindeldf spaces X < I°! such that every point in X is a G;-set and, for every
a < oy, the projection of X onto the first a-coordinates is g-compact but X

is not, is not empty.

ExaMpLE. There exists an uncountable space X = Q“ such that

(a) p,(X) is countable for every a < w,, where p, is the projection
Pa: le - Q%

(b) if xe X, then {x} is a Gssubset of X;

(c) for every hereditarily Lindelof space Y the Cartesian product Y x X® is
Lindelof. |

Construction of X. There exists a family {4,: 1 < a < w,} such that

(1) A, is a countable set consisting of strictly increasing sequences of
rational numbers of Q of length a for 1 <a <w,;

(2) if @« < B < w,, then p,(A4p) = A,;

(3) if ae A, for 1 < a < w,, then for every limit ordinal number # < a
the numbers

a(f) =lima(4) and sup{a(d): 1 <a}

A-p
are rational (see [4], p. 91, the construction of the Aronszajn tree).
Let us attach to aeA,, for 1 <a <w,, x,eQ”! such that

_ fa(B) if B<a,
*a(B) = {sup a(): A<a) if B> a.
Let X = U {X,: 1 <a <w,}, where X, = {x,: ae 4,}, be a subspace of

Q“!. It is obvious that X is an uncountable space.
Proof of (a). If 1 < a < w,, then from (2) we infer that

pa(X) = Aa Upa(U {Xﬁ: B < a})’

so it is countable.
Proof of (b). If x = x,, where ac A4,, then

{x€X: pasr2(Xa) = Pasr2(X)} = {x,}.

By (a), p,+2(X) is countable, so from the last equality it follows that x is a
Gy-set in X.

Proof of (c). Let Y be a hereditarily Lindelsf space and ¥ an open
covering of Y x X. Let # =) {#,: ne N} be an open basis of Q such that
#,,, is a pairwise disjoint open covering of Q which refines #,. We denote
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by S the set of finite sequences of natural numbers. For se S the symbol |s]|
stands for the length of s and its elements are denoted by s; for i <|s|. If x
= x,€ X, where aec A,, x,(a®)e Be # and a < 4, then put

F(x,B,)=( P F)nX,

B<w)

where

B if =24,
0 otherwise.

{x(B} if B<a,
F, _{

For x =(xy, ..., Xp, ...)€e X" and seS, put
A(x, s) = {ye Y: there are an open neighbourhood H, of y,
A(y) <w, and Ve such that
v, x)e H, x <I"|F(x,-, B, A()))xX xX x...c V},

i<|s
where x; € Xy(x), X; (2 (x;))€ B; € By for i < |s|. We can assume, without loss of

generality, that A(y) for ye A(x, s) is as small as possible. Notice that
{ye A(x, s): A(y) < B} is an open subset of A(x, s) since it is equal to

U1{H,: yeA(x, s) and A(y) < B}

for B <w,, and A(x, s) is a Lindelof space, so

A(A(x, s)) =sup {A(y): ye A(x, 5)} < @,.
If A(x,s) =@, then put A(A(x, s)) =0. Put

B1 =sup {A(A(x, s)): xe X} and seS}.
Since X! is countable, we have B, < w,. If B, is defined, then put

Bui1 =sup {A(A(x, 5)): xe XY, a < B,+1 and seS}.
Then
B =sup{B,: neN} <w,.
Put
Z2={H,x P F(x;, B, A\(l))) xX xX x ...: yeA(x, 5), S€S,

i<|s|
xe XY and a < B}.

Claim 1. & is a covering which refines ¥ .
Proof of the Claim. By the definition, Z refines ¥, so it is enough
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to show that JZ =Y xX“. If x = x,e X, then put
o= {x if ael) {A,: a < B},

Xaip otherwise,
where a|p stands for the projection onto the first f-coordinates. Let yeY,
X =(X4, ..., Xp, ... )€ XY and x' = (x}, ..., xJ, ...). There exist ke N, an open
neighbourhood H of y, xjeD; c X, a < A; <w;, a <, Bie B,; for i <k,
and Ve ¥ such that _

HxD;xD;x... xDyxXxXx...cV,

where
‘Dl' =( P D,(}.))(WX,
A<wg
where
@A)} ifi<a,
Q otherwise.

Without loss of generality we can assume that x;(4)eB; for A > a and i <k
(see (3) and (1)). Let z for i <k be a point of () {X,;: A <a+1} such that

(@) = xi(4d) if i<a,
A= xi(a@) if A>a.
Put z =(zy, z,, ..., 2, %, Z, ...). Then
(0,2 eHxDyx... xDixXxXx...cV

because a < 4; and x;(4)e B; for A > a and i < k. Consequently, ye A(z, s). By
the definition of B, we have A(y) < B for i < k and an open neighbourhood
H, of y such that

Z(y,2)=H,x P F(z, B, A\())) x X xX x ...c V'
i<k

for some V'e¥". Notice that from the fact that x;(4)eB; for A>a, the
definitions of F(z;, B;A(y)) and z; it follows that (y, x)e Z(y, 2). In order to
show that (y, x)e Z(y, z) it is enough to observe that x’'|f = x|f and that

Z(y,z)=Hx P p;'ps(F(z(i), B;, AQ))) x X x X x ...
i<k

~ The proof will be completed if we show that
CLAaM 2. & has a .countable subcover.
Let us denote by py and p,y projections of Y x X" onto Y and X%,
respectively. Notice that the set

P ={pn2): Ze %)}
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is countable. Put

XP)={ZeZ: pn(Z)=P} for PeP
and
%(P) = {H: there is Ze 2 (P) such that py(Z) = H}.

Since Y is a hereditarily Lindeldf space, there is a countable subfamily J# (P)
of %(P) such that ) #(P) = ) 4(P). The family

{HxP: He #(P) and Pec 2}

is a countable subcover of Z.

Remark 1. In [1] it was proved that if Y is a hereditarily Lindelsf
space and Z a Lindelof C-scattered space, then Y xZ“ has the Lindelsf
property. Notice that if a LindelSf o- (C-scattered) space Z is a subspace of X,
then Z is countable. X does not also contain uncountable separable metric

subspaces.
In order to show the first part of the remark it is enough to observe that

every compact subset of X is scattered; otherwise, we could find a countable
subset S of w, such that the projection pg(X) would be uncountable and that
every Lindeldf scattered space in which every point is of G;-type is countable.

If the second part of the remark does not hold, then we could find a

countable subset S of w, such that pg(X) would be uncountable.
Let us finish with a result which says that certain subspaces of I°! with

“good projections” do not belong to &.

ProPosITION 2. Let Z = I°' be an uncountable space satisfying the fol-
lowing conditions:
(@) p.(2) is countable for a < w,;
(b) for every zeZ there exists a, < w, such that, for every a, < f < w,,
z(B) = z(a;), and z|a, is a strictly increasing sequence; '
(¢) {yeZ: yla, =z|a,} is countable for every zeZ;
(d) for every zeZ and every countable limit ordinal number o,
2(2) = sup {z(B): B <a}.
Then Z does not belong to &.
Proof. If Z is not Lindeltf, then there is nothing to prove, so let us
assume that Z has the Lindelof property. For 1 < a < w, put
A, = {aep,(Z): a is a strictly increasing sequence
and there is no zeZ and 4 <« such that a, = 4 and
z|A = al|l}.
Let Y’ be a subspace of I°! such that

V' =U{¥: a <o},
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where
Y, ={y,eI’': acA,}] and y,Ja=a for acA,,
and
Va(B) = sup {a().): A<a) for B=a.
Notice that Y’ is disjoint with Z. Put Y =Y UZ. The topology on Y is

induced by sets U U K, where U is open in I°! and K c Z.

The product Y xZ is not a Lindelsf space. In order to show this it is
enough to notice that {(z, z): ze Z} is an uncountable discrete closed subset
of YxZ.

CLaIM. Y is a Lindelof space.

We shall split the last claim into two claims:

CLAaM (1). Y’ is a Lindelof space.

CrLamM (ii). If Y < U and U is open in Y, then Y\U is countable.

Proof of Claim (i). The proof is similar to the proof of the Lindelsf
property of X. Let & be a countable base of I and ¥~ an open covering of
Y. For yeY,, a <w,, put

o (y) = {Be #: y(®)eB and there are a < B(y, B) <w, and
Ve such that F(y, B, B(y, B)=( P F,)nY <=V},
’ A

<(¢)1

where

{{y(l)} if 1<a,

F,={B if A=8(, B),

I otherwise.

Since Y’ consists of increasing sequences, &/ (y) # @ for every yeY, and a
< w,. Put

By =sup {B(y, B): yeY; and Be #(y)}.

Since Y| and & (y) for ye Y, are countable sets, f; < w,. If B, is defined,
then put

Bn+1 =sup {B(y, B): ye U{Y;: A<B,+1} and Be (y)}

and
B =sup{B,: neN}.
To complete the proof of the claim it is enough to show that
Y =U{F(y, B, B(y, B): yeU{Yi: A <B} and Be #(y)}.
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Let y be an element of Y; for A > B. Then y|B belongs to A,. Let )’ be a
point of Yy such that y’|f = y|B. There exist Be #, 2,, 2, and Ve ¥ such
that y'(B)eB, a; < f <a,, and

F=(P F)nY cV,

A<wy

where

B if A=a,,
I otherwise.

V@ if d<ay,
F}. = {

Without loss of generality we can assume that
‘ lim y'(A)eB.

1—’11

Let v be an element of Y, such that v|a; = y’|a;. Then Be /(v) and
B(v, B) < B <a,. It is easy to see that y'eF(v, B, B(v, B)). Since

ps ' pg(F((v, B), B(v, B)) = F(v, B, B(v, B) and y|B=ylB,
we have also yeF(v, B, B(v, B)).
Proof of Claim (ii). Let U be an open subset of Y such that Y’ < U.

There is an open covering # of Y’ in Y such that H < U for every
He s# and

H=(P H)nY.
a<wi
The family s has a countable subcover of Y’, so there is f < w, such that
ps ' pg(Y) < U. To complete the proof of the claim it is enough to observe
that if ae p,(Z)\p,(Y’) for a < w,, then {zeZ: z|a = a} is countable (see the
definition of A4,, (b) and (c)), and to-apply (a).

Remark 2. We do not know whether X from the Example belongs to
Z. (P 1333) We think that the answer to this question would be much more
interesting than the results of our paper(!).
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