ON ADDITIVE FUNCTIONS
HAVING A NON-DECREASING NORMAL ORDER

BY

I. KÁTAI (BUDAPEST)

1. We shall say that a non-negative additive function $f(n)$ has a non-decreasing normal order if there exists a monotonically non-decreasing function $A(n)$ such that

$$
\frac{f(n)}{A(n)} \to 1 \quad (n \to \infty)
$$

for almost all n (i.e. for all n neglecting a sequence of density 0).

It is obvious that the functions $\log \sigma(n), \log \varphi(n), \log n$ have non-decreasing normal orders. The magnitude at prime places p is $O(\log p)$ for all of them. It would be interesting to characterize the class of the additive functions having a non-decreasing normal order. (P 1004)

Let $H(x)$ be a monotonically non-decreasing positive function and let $f(n)$ be defined as

$$
f(n) = \sum_{p|n} H(p),
$$

where p runs over the prime divisors of n. Narkiewicz [3] proved the following assertion:

If $H(x) / \log x$ is a monotonically non-decreasing function and $f(n)$ defined by (1.2) has a non-decreasing normal order, then

$$
H(x) = O((\log x)^{1+\delta})
$$

holds for every positive δ.

He also stated that (1.3) holds without the monotonicity of $H(x) / \log x$. Our purpose is to prove this conjecture (1). Namely, let

$$
t(x) = \frac{H(x)}{\log x},
$$

$$
T(x) = \max_{2 \leq z \leq x} t(z).
$$

(1) Another proof has been supplied by P. D. T. A. Elliott (see this journal 36 (1976), p. 289-294) [Note of Editors].
Theorem 1. Let \(H(x) \) be a positive monotonically non-decreasing function in \([1, \infty]\), and let \(f(n) \) be defined by (1.2). If \(f(n) \) has a non-decreasing normal order, then

\[
T(x') \leq c_1 T(x) \quad (x \geq x_0(v))
\]

for every \(v > 1 \), \(c_1 (c_1 > 1) \) being an absolute constant. Consequently,

\[
H(x) = O \left((\log x)^{1+\delta} \right) \quad (x \to \infty)
\]

holds for every positive \(\delta \).

We hope to return to this question to give a necessary and sufficient condition in a forthcoming paper.

2. In the sequel, \(c, c_1, c_2, \ldots \) denote absolute positive constants, and \(\delta, \varepsilon, \varepsilon_1, \varepsilon_2, \ldots \) arbitrarily small positive constants, not the same at every occurrence. \(\sigma (\sigma \geq 1) \) is an arbitrary positive integer. \(p \) denotes prime numbers, and \(\omega(n) \) the number of the distinct prime factors of \(n \).

To prove our theorem we need first some lemmas.

Lemma 1. Under the assumption of Theorem 1 we have

\[
f(n) \leq (1 + \varepsilon_1)f(m)
\]

for all \(n \in \left[\frac{1}{4} x^{r+1}, \frac{3}{4} x^{r+1} \right] \) and \(m \in (\frac{3}{4} x^{r+1}, x^{r+1}) \), apart from \(\varepsilon_2 x^{r+1} \) of \(n \)'s and \(\varepsilon_3 x^{r+1} \) of \(m \)'s if \(x > x_0(\sigma, \varepsilon_1, \varepsilon_2, \varepsilon_3) \).

This is a straightforward consequence of the assumption that \(f(n) \) has a non-decreasing normal order.

Let \(N_s(x) \) denote the number of those integers \(n \) in the interval \(\left(\frac{1}{4} x^{r+1}, \frac{3}{4} x^{r+1} \right] \) the largest prime factors of which are greater than \(x' \).

Lemma 2. We have

\[
N_s(x) = \frac{1}{4} \log \left(1 + \frac{1}{\sigma} \right) \cdot x^{r+1} \leq c_2 \frac{x^{r+1}}{\log x^{r+1}} \quad \text{for } x \geq 2.
\]

Proof. This is obvious, since

\[
N_s(x) = \sum_{p > x'} \left(\left[\frac{3}{4} x^{r+1} \right] - \left[\frac{1}{2} \frac{x^{r+1}}{p} \right] \right) = \frac{1}{4} x^{r+1} - \sum_{x' < p < 3x^{r+1}/4} \frac{1}{p} + O(\pi(x^{r+1})
\]

and

\[
\sum_{u < p < v} \frac{1}{p} = \log \frac{\log v}{\log u} + O(\exp[-\sqrt{\log u}])
\]

(see Prachar [4]).

Let \(F(x', x) \) be the number of those integers smaller than \(x' \) all prime factors of which do not exceed \(x \). Levin and Fainleib [2] proved the asym-
ptotical formula

$$F(x^t, x) = x^t z(t) + O\left(\frac{x}{\log x}\right)$$

as $x \to \infty$ uniformly for all t varying in a bounded interval. In this formula

$$z(t) = \exp\left[-t\left(\log t + \log \log t - 1 - \frac{\log \log t}{\log t}\right) + O\left(\frac{1}{\log t}\right)\right] \quad \text{as } t \to \infty.$$

Let $M_r(x)$ be the number of integers in $(\frac{3}{2}x^{r+1}, x^{r+1}]$ all the prime factors of which do not exceed x.

We get immediately

Lemma 3. For every fixed large r and for $x > x_0(r)$ we have

(2.4) \quad $M_r(x) \geq c_r C(r)x^{r+1},$

where

(2.5) \quad $C(r) = \exp\left[-(r+1)\left(\log(r+1) + \log \log (r+1) - 1 - \frac{\log \log (r+1)}{\log (r+1)}\right)\right].$

Let $\gamma = \exp(-1) = (2, 71\ldots)^{-1}$, and $w_i = x^i$ ($i = 0, 1, \ldots$).

It is a well-known result of Hardy and Ramanujan [1] that

$$\frac{\omega(n)}{\log \log n} \to 1$$

for almost all n. We use the weaker result, namely that

(2.6) \quad $\omega(n) \leq 2\log \log n$

for almost all n.

First we estimate the number $N(i, t)$ of those integers $n \leq x^{r+1}$ which have at least t distinct prime divisors in $[w_{i+1}, w_i]$. It is obvious that

$$N(i, t) \leq \sum'\left[\frac{x^{r+1}}{Q_i}\right],$$

where by \sum' we mean the summation extended over the integers Q_i which are the product of t distinct primes p in $[w_{i+1}, w_i]$. From (2.3) we get

$$\sum' \frac{1}{Q_i} \leq \frac{1}{t!} \left(\sum_{w_{i+1} \leq p < w_i} \frac{1}{p}\right)^t < \frac{1 + c_3 \exp\left[-\sqrt{\log w_{i+1}}\right]}{t}$$

assuming only that

(2.7) \quad $t \exp\left[-\sqrt{\log w_{i+1}}\right] \leq 1.$

Consequently,

(2.8) \quad $N(i, t) \leq c_4 \frac{x^{r+1}}{t!}.$
Let
\[(2.9) \quad t_i = c_5 (\nu + 1) (i + 1)^2 \quad (i = 0, 1, \ldots, r_0),\]
\[(2.10) \quad r_0 = \left\lfloor (\log \log x)^{1/3} \right\rfloor,
\]
c5 being a positive integer which we shall specify later.

From (2.8) we get
\[\sum_{i=1}^{r_0} N(i, t_i) \leq c_5 x^{r+1} \sum_{i=0}^{r_0} \frac{1}{t_i!}.
\]

Using the relation
\[t_i! \geq c_7 \left(\frac{t_i}{e}\right)^{t_i} \geq c_7 \exp \left[\frac{c_5}{2} (\nu + 1) (i + 1)^2 \log (\nu + 1)\right]\]
which holds for every large \(c_5\), we get
\[\sum_{i=0}^{r_0} \frac{1}{t_i!} < c_9 \exp \left[\frac{c_5}{2} (\nu + 1) \log (\nu + 1)\right],\]
and so
\[(2.11) \quad \sum_{i=0}^{r_0} N(i, t_i) \leq c_{10} \exp \left[\frac{c_5}{2} (\nu + 1) \log (\nu + 1)\right] x^{r+1} = B_r x^{r+1}.
\]

We see that
\[(2.12) \quad \sum_{i=0}^{r_0} t_i \geq \frac{c_5 (\nu + 1) r_0^2}{6} \geq 2 \log \log x^{r+1}\]
if \(c_5 \geq 1\) and \(x > x_0(\nu)\). Let \(c_5\) be so large that \(B_r < \frac{1}{2} c_1 C(\nu)\) (see (2.11), (2.4) and (2.5)). This holds for \(c_5 = 3\) and for every large \(\nu\).

Hence we get immediately the following assertion.

There exists at least \(\frac{1}{2} c_1 C(\nu) x^{r+1}\) integers \(m\) in \(\left(\frac{1}{2} x^{r+1}, x^{r+1}\right)\) all prime factors of which are smaller than \(x\) and have at most \(t_i - 1\) prime factors in every interval \([w_{i+1}, w_i)\) \((i = 0, 1, \ldots, r_0)\).

From (2.6) and (2.12) and by the monotonicity of \(H(p)\) it follows that
\[(2.13) \quad f(m) \leq \sum_{i=0}^{r_0} H(w_i) t_i\]
for all \(m\) but \(\eps x^{r+1}\) of them.
For the set of integers counted in Lemma 2, we get \(H(x^r) \leq f(n) \).
Using Lemma 1 we have

\[
(2.14) \quad H(x^r) \leq (1 + c_1) \sum_{i=0}^{r_0} H(w_i) t_i
\]

for all large \(x (x > x_0(v)) \).
Dividing (2.14) by \(\log x^{r+1} \), we have

\[
2.15 \quad t(x^r) \leq c_{10} \sum_{i=0}^{r_0} \gamma^i (i + 1)^2 t(w_i) \quad \text{for} \quad x > x_1(v).
\]

To prove (1.6) we may assume that \(T(y) \to \infty \) as \(y \to \infty \). So for every \(y \) we have \(u = u(y) \leq y (u(y) \to \infty \) as \(y \to \infty) \), so that \(T(y) = T(u) = t(u) \).
Now we take \(u = x^r \) and apply (2.15). We get

\[
T(y) = T(x^r) \leq \left(c_{10} \sum_{i=0}^{r_0} \gamma^i (i + 1)^2 \right) T(x) \leq c_1 T(y^{1/v})
\]

if \(y \) is sufficiently large, and \(y \geq y_0(v) \). This proves (1.6).

Now (1.7) follows immediately from (1.6). Let \(v \) be large and fixed.
Take \(x_k = x_0^k, \ x_0 = x_0(v) \). Then

\[
T(x_k) \leq c_k^k T(x_0),
\]

and so

\[
\frac{T(y)}{(\log y)^{c_{11}/\log y}} \to 0 \quad (y \to \infty).
\]

Choosing \(v \) such that \(c_{11}/\log v \leq \delta \), we get (1.7) immediately.

REFERENCES

Reçu par la Rédaction le 16. 1. 1976