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S. TRYBULA (Wroclaw)

A NOISY DUEL UNDER ARBITRARY MOVING. Il

1. Introduction. In papers [17]-[21] of the author and in this paper an

™ versus n bullets noisy duel is considered in which duelists can move at will,

e cases m < 25, n < 6 and n = 1 for any m are solved. In [21] also an idea is

8ven to determine the optimal (in limit) strategies for any m and n using
3 computer.

In this paper we shall solve the cases n=4, m < n.

Let us define a game which will be called the game (m, n). Two Players
and II fight in a duel. They can move as they like. Maximal speed of Player
is v, , maximal speed of Player II is v, and it is supposed that v, >v, 2 0.
layer 1 has m bullets (or rockets), Player II has n bullets (rockets).

Assume that at the moment t = 0 the players are in the distance 1 off and
that vy +v, = 1. _ .

Denote by P(s) the probability that Player I (II) achieves a success
destroys the opponent) if he fires in the distance 1—s. It is assumed that the.
function P(s) is increasing and continuous in the interval {0, 1] and has
4 continuous second derivative inside this interval, P(s) = 0 for s < 0, P(1) = 1.

Player I gains 1 if he only achieves the success, gains —1 if Player II only
Achieves the success, and gains 0 in the remaining cases. It is assumed that the
duel is a zero-sum game. ‘ ‘

-~ The duel is noisy — the player hears the shot of his opponent. Without
loss of generality we can also assume that Player II is motionless. Then v, = 1.

When Player 1 has fired all his bullets, his motion in the direction of the
Opponent is unreasonable. Thus we assume that Player T evades with maximal
Speed after firing all his bullets.

Suppose that Player I has fired all his bullets and he evades. In this case
Player 1T will do the best (if he survives) if he fires all his bullets immediately
after the last shot of Player L. If, on the other hand, Player II has fired all his

ullets and Player I survives and has yet bullets, the best what he can do is to
Teach the opponent and to achieve the success surely.

We suppose also that the reader knows the papers {17], [18] of the author

and remembers the definitions, notation and results obtained there.
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For definitions and notions in games of timing see [5], [22]. For results

see [11-3], [61, [71, [9]-[11], [13], [23].

2. Duel (1, 4), {a). In this section we solve the duel in which Player I has
one bullet, Player II has four bullets and the game is beginning when players
are in the distance a from each other.

Let us define strategies £ and » of Players I and II for which we shall prove’
that they are optimal in limit for some a.

Strategy of Player L. Evade if Player I did not fire. If he fired (say at
a'), play optimally the obtained duel (1, 3), <2, @, a’ A ¢).

Strategy of Player IL Fire at {(a) (at the beginning of the duel) and if
Player I did not fire at this moment, play optimally the obtained duel (1, 3), {2,
a, anc.

The duels (m, n), {1, a A ¢, a) and (m, n), {2, a, a A ¢) are defined in [18],.
Section 5.

It is assumed also that between successwe shots of the same player the
time & has to pass.

The number (4> denotes the earliest moment when Player I reaches the
point 4.

“Play optimally” means “apply a strategy optimal in limit” (i.e., optimal
for §—-0, see [18] for a precise definition). . |

We shall prove that if a < a,, when a,, is the only root of the equation

(D Q3(a10)—(1+v4,)0%(a,)—0*(a,)+1 =0,

Q(s)=1-P(s), v,, = 3—2ﬁ,-Q(a14) = 0.851053, then the strategies & and
n are optimal in limit. The limit value of the game (1, 4), {a) is

(2) ) a ={_—1+Q2(a) ifaga]j’
=141 40,)0%@) i a;, S a<ay,,
Q(ay) = 0.853553.

Proof. Suppose that Player II fires at @' < a and then applies the strategy
fio- For thlS. strategy (a', 7o) (7, may depend on 4') we have

K(& @, o) > ~ P(a)+(1—P@)}5—k(®),
Where 43 is the limit value of the game (1 3, {(2,a,anc)and k(§—-0if §-0.
Taking the formulae on 2, for particular a into account (see [18]) we obtain
— 20 . _ 2
K(c; al’ ﬁo)z{ 1+Q (a) k(f) , 1+Q (a) k(é) lf a3 a12’
—1+(1+0,))@°@) k(@) > —1+(1+v1,)Q*(@)—k(®)
if a12 \<. a s 014-
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Suppose then that Player IT does not fire. For such a strategy #,

K 7)) =024

if o, is given by (2).
On the other hand, assume that Player I does not fire at <a). For such
a strategy £,

K(& n) < —P(@)+(1—P(a)d5+ k() = vi4+k(©)

if v9, is given by (2).
If Player I also fires at {a), then

K(&n) < —QXa)(1 - 0% (@) +k() < via+k(d)

$,(Q(@) = 0°(a)—20*(@+1 <0

for a < q,,, and

$,(Q) = @°(@)~(1+v,,)@*(@—Q*(@)+1 <0

for G1; S A ayy. |
The function S,(Q) of the variable Q has its only minimum at the point

Q =3/% > 0928318,
and
$,(0(a,,)) = —0004044,  S(1) =0.
Thus the inequality S (Q(a)) 0 always holds for a < a,,.

The function S, (Q) is a decreasing function of Q and S,(Q(a,,)) = 0. Thus
also 5,(Q(a)) < 0 for a,, < a < a,,. The proposition is proved.

Let us notice that in the proof it is sufficient to consider only nonrandom
Strategies £ and 7 (and (@, #,)).

3. Duel (1, 4), {1, a A ¢, a). Suppose now that Player I can fire a shot
beglnmng from {a)+c and Player II can fire a shot beginning from <{a) (but
SOmetimes not at (a) see [18]). Define the strategles ¢ and 5 of Players I
and 17,

Strategy of Player I. Evade if Player I did not fire. If he fired (say at
@), play optimally the obtained duel (1, 3), <@}, a} A c,), where

=max(d, a,), a;= y{ay+c<.

Strategy of Player II. Fire before {a)+c and play optimally the
Obtained duel (1, 3), {2, a,, a, A ¢,>, Where a, = »{a)+c{.

The symbol >t{ denotes the point at which Player I has been at the
Woment ¢.
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Now the strategies £-and n are optimal in limit if

" Q(a) > 0(a, ) = 0.814115
and

—14+0%a if a<a,,,
3) 11},;42{ Q*(a) 12

—1+(1+v,,)Q%a) if a; <a<ayg,
is the limit value of the game.
To prove this let us notice that, for any strategy & of Player I,
K& n) < —P(@)+ Q@5 +k(§) = Ha+ k()
if a<ag,; (see [18]).
On the other hand, if Player 1I fires (at a') and then plays #,, we have
K(& @, fig) 2 —P(@)+ Q@) 83— k(@) = via—k(d) = V54— k()

if 11)‘14 is given by (3).
If Player II does not fire, we obtain

K(&#)=0> b,
4. Duel (1, 4), {2, a, a A c). Define & and 7.
Strategy of Player 1. Evade if Player I did not fire. If he fired (say at
@), play optimally the obtained duel (1, 3), <2, 4}, d A ¢;), where
ay = max(a, a,), c;e-1 = Ya)+c{.

Strategy of Player IL If Player I did not fire before, fire at {a) +c and
play optimally afterwards. :

By definition, a, is the point where Player 1 has been at {(a)+c. The
strategy of Player II means that if Player I did not fire before, then Player II
should fire a shot at <a) + ¢ and should play optimally the obtained duel (1, 3):
{2, a;, a; A ¢,y (if Player 1 did not fire also at {a)+c).

We have ' '

K& m=—-1+Q*@)+k@ if a<ay,.

It is easy to see that Player I always assures in limit the value —1 +Q?%(a) if
a < a,, (compare with the duel (1, 4), {a)). On the other hand, if Player I fires
before {a)+c, then

K(&; ) < P(@)—- Q@) (1 —Q*(a) +k(@)

| = 1-20(0)+Q°(@)+k(§ < —14+0%*(a)+k(9),
which after dividing the difference of both sides by Q(a)—l leads to the
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inequality
4) 0*(@+0°@)+Q*(@)-2>
This polynomial has the only root Q(a)= Q(d,,) = 0.871757. Thus the
inequality holds for a < dyg- _ _
The proof in other cases is the same as in the duel (1, 4), {a). Thus, if

a< a14, the strategies £ and n are optlmal in 11m1t and the limit value of the
game 1is

(5) By = —1+Q2(a)
5. Results for the duel (1, 4). We have
Lo _ { —14+0%a) if Q(a) > Q(a,,) = 0.853553,
Tl =140 +0,,)0%0@) i Q(ay,) > Q) = Q(a,,) = 0.814115;
. _ {—1+Q2(a) if Q(a) > Q(a,,),
Yl =141 40,)0%a)  if Qa,,) = 0(a) = Q(a,,) = 0.851053;

B, = —1+0%a) if Q(a) > Q(dy,) = 0.871757.
6. Duel (2, 4), <{a).
Case 1. Define strategies ¢ and n of Players I and IL

Strategy of Player 1. Evade if Player I did not fire a shot. If he fired
(say at a'), play optimally the obtained duel (2, 3), {2, @, a’ Ac).

Strategy of Player IL Do not fire if Player I evades. If he approaches
Player I, fire a shot at {a,,» and play optimally the duel (2, 3). If Player I fired
before he reached a,, (say at a'), play optimally the obtained duel (1, 4), 1,
adnc a)d.

We prove that these strategies are optimal in limit and
(6) 054 =0

when

1

(7 > df ~ (0.986429,
) Q(a) = O( 1508

Where 134 =~ 0.013757 is defined in [18].
*Suppose that Player II does npt fire. For such a strategy #,

K(&; 7)) =0 = v34. |
Suppose that Player I fired at @’ < a. For such a strategy (', 7j,) we have
K(&; d, fig) > —P(a)+Q(a)vss —k(d) |
= —1+4+(1+v%5)Q(a)— k(9
2 —1+(1+135)Q(a,54) — k() = —k(é) = v34— k()
if the constant a satisfies condition (7).
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On the other hand, if Player I does not approach the point a,,,
K(& 1) =0 =104,

If Player I fires at a’ < a,,, we have
K@, o 1) < P(@)+Q(@)¥ et k(@)
= 1-20(a)+ Q@) +k(é) < k()

since the polynomial $(Q(a)) = 1—2Q(a)+Q3(a) is an 1ncreas1ng function of
the variable Q = Q(a) for a satisfying (7) and $(1) =
If Player I fires at {a,,),

K(& 1) < Q%203 + k(@) = —0%(a24) P(a0) + k(@) < k(&):
If; finally, Player I reaches the point a,, without firing a shot, we have
K1) < — P00+ 00085+ k()
= — 1+ (1+055)Q(a,4) +k(é) = k(@)
The proposition is proved.
Case 2. Define ¢ and 7.

Strategy of Player 1. Evade if Player II did not fire. If he fired a shot
(say at a'), play optimally the obtained duel (2, 3), <2, @, @' A c).

Strategy of Player II Fire at {(a) and if Player I did not fire at {a},
play optimally the duel (2, 3), €2, a, a A ¢). If Player I fired, play optimally the
duel (1, 3), <a,», where a, = Y{a)+&.

We remind that »t{ denotes the point at whlch Player I has been at the
moment ¢.

The above strategles are optimal in limit when a,, < a < 4,,, where
Q(d,,) = 0918836 satisfies the equation

®) 0% (d24)— Q2(d0)—(1+v35)Q(d,9) +1 = 0.
The limit value of the game is
© e = —1+(1+155)0(a).

To prove this suppose that Player II fires when Player I is at the point
a < a. ¥For such a strategy (a’, ),

K(& a, fio) 2 —P(@)+Q(a) 53 —k(®)
= —1+(1+v35)Q(a)— k(@)
2 1414 0)Q@) — k(@ = Ba—k(@)
when a' < a,;, Q(a,;) = 0.882709 (see [18]).
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If Player II does not fire,

K& MH=02 —1+(1+135)0Q(a)

when g = a,,.
. Suppose now that Player I does not fire at {(a). We obtain

K(& 1) < —P(a)+Q(a)0%3 + k() = v5a+k(@).
When Player 1 fires at {a),
K(; n) = 0*@vis+k@ = —Q* @)+ Q@)+ k()
if a < a,,. Thus we obtain | |
0*(a)—Q*(@)—(1+v3)Q@+1 <0
Since v3Y > 0, this polynomial is a decreasing function of the variable Q and is

equal to zero for Q(a) = Q(d,,)- Thus the inequality holds for a < d,,, which
Completes the proof of the proposition.

Case 3. Define ¢ and #.

Strategy of Player I Fire at {a) and play optimally the obtained duel
(1, 4), <1, anc, a) (or (1, 3), <a,), a, = y<a>+&).

Strategy of Player 11. Fire at {a)> and play optimally the obtained duel
(2’ 3)’ <2 a, an C> (01' (1 3)a <a1>a al ><a’> +8<)

Now |
K(& ) = Q*@)vis +k(d) = —Q*(0)+Q* (@) + k(@)

for a < a,,. We now try to prove that for d,, < a < a,, the strategies ¢ and
N are optimal in limit and

(10) Ve = —Q*(@)+Q%(a).

Thus suppose that Player II applying 7 fires later than {a) or does not fire
at all. For a < a,, we obtain

K(&; %) = P(a)+Q(a)d% 4 —k(9)
= 1-20(a)+ Q3@ — k(@) > ~0*(a)+0° (@) —k(®).

~ From the above it follows that if a < a,,, then Player I always assures for
himself (in mean) the value v%, given by (10).

On the other hand, if Player I applying ¢ fires a shot later than {a) or
does not fire, then

K& n)< —P(a)+Q(a)tzfis+k(€)

{ 1+(1+085)Q(a) + k(D if a < a,3,
1420(0)—20%@)+ Q@)+ k(@ if a3 <a<ay,.
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In the first case we obtain the inequality

Q*(a)—0*(@)—(1+v53)Q@+1> 0

which is fulfilled for a > d,,. In the second case we obtain
Q*(a)—2Q%(a)+20(a)—1 < @*(a)—-Q*(a)
which is satisfied for any a. Thus the proposition is proved.
7. Duel (2, 4), {1, anc, a).

Case 1. It is easy to prove, comparing with the duel (2, 4), {a), that if
a < a,,, then the optimal in limit strategies defined in that duel are also
optimal in limit here. Thus we have #%, = 0 for a < a,,. '

Case 2. Define ¢ and #.

Strategy of Player I. Evade if Player II did not fire. If he fired (say at
a’), play optimally the obtained duel (2, 3), <2, a4}, ay Ac,),

where ¢y = max(a, a,), a, = ){a)+c{.

Strategy of Player II. Fire before (a)+c and play optimally the
obtained duel (2, 3), <2, a,, a; A c,), where a; = Y{a)>+c<.

Now
(11) P = —1+(1+153)0(a)

if a,; <a<a,y,.

The proof that Player I applying £ assures in limit the value 3, given in
(11) 1s the same as in Case 2 of the duel (2, 4), (a>. The proof that Player I1
applying # assures in limit this value is obvious.

Case 3. Define ¢ and .

Strategy of Player I If Player II did not fire before fire at {a)+c and
play optimally afterwards. If he fired, play optimally the obtained duel (2, 3),
{2, a;, a; Ac,), where a, = ><a>+c(.

Strategy of Player II Fire before {a)+c and play optimally the
obtained duel (2, 3), €2, a,, a, A ¢y ), .a; = y{a)+c<.

Now we show that
(12) B34 = —14+20Q(a)—20%(a)+ Q> (@

for a,, <a<a,,.
Player II always assures in 11m1t that value.
On the other hand, if Player II fires before {a)+c, we have

K(; i) 2 —P@)+ Q@3 — k(@) = 5. —k(®
if 33, is given by (12).
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If Player II fires at {a)+c, we obtain
K(¢; ) = QX a)vis —k(d) |
= — Q@)+ Q%) — k(@ > —1+20(a)~20%(a) + 0(@)—k(&).
If Player II fires after <{a)+c or does not fire, then '
K(&; #) > P(@)+Q(a)b{s—k(®)
—1-20()+ 0¥ @ k@) < —1+20()—20%(@)+Q*@) — k(@).
All the above inequalities hold under the condition a,, < a < a,;. The
proposition is proved.
Let us notice that now the value of the game 127‘54 is different from that for
the duel (2, 4), {(a) in Case 3.
8. Duel (2, 4), {2, a, anc).
Case 1 Here also the optimal in limit strategies £ and # are the same as in
the duel (2, 4), <a> if a < a,,. Thus #, =0 if a < a,,.
Case 2. Define ¢ and 7.
Strategy of Player L Evade if Player II did not fire. If he fired (say at
a'’), play optimally the obtained duel (2, 3), <2, 4}, a; A ¢),
dy = max(d, a,), a, = ylay+c{.

Strategy of Player IL If Player I did not fire before, fire at {a)+¢ and
play optimally the duel (2, 3), <2, ay, agAn ¢y, 4= Yay +¢{. If he fired
before or at (a)+c¢, play optimally the obtained duel.

Now
(13) B3, = —1+(1+v55)Q(a)
for a,, < a < d,,, where the number d,, is the only root of the equation
(14) Q3(dy,)— (B +153)Q(d,4)+2 =0, Q(d,,) = 0933827,

' The proof is the same as in the duel (2, 4), {a) with the only exception
when Player I fires before {a)+c. For such a strategy (¢, &), for a < a,,, we
obtain

K(d, &y; 1) < P(a)+ Q@b +k(E)
= 1-20(a)+ Q@)+ k(8) < —1+(1+v35)Q(a)+ k(&)

Q*(@)—(3+135)Q(@)+2<0

l'e'a if a s d24.
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Case 3.

Strategy of Player 1. Fire before {a)+c and play optimally the
obtained duel (1, 4), (1, a; A ¢, a;), where a;, = >{a)+c<.

Strategy of Player IL If Player I did not fire before, fire at {a) +c¢ and
play optimally afterwards. If he fired, play optimally the obtained duel (1, 4),

{1, a; Ancy,ap).
In this case
(15) 94 = 1-20(a)+ Q%)

if d,y, <a<ag,.

Player 1 always assures in limit this value.

To prove that Player Il does the same assume that Player I fires before
{a)+c. For such a strategy &, if a < a,, we have

K(& 1) < P@)+Q(a)04 +k(@) = 354+ (&).
If Player I fires at {a)>+c, we have (for a < a,,)
K(& 1) < Q%(a)vis +k(©) = —0*a)+Q*(a) +k(®)
< 1-2Q(a)+ Q3(a)+ k(&) = B34 +k(®).

If Player I has the intention to fire after {a)+c¢ or not to fire at all, we
obtain (for a < a,,)

K(; 1) < —P(@)+Q(a)835 +k(9)

3 {—1+(1+vza)Q(a)+k(a | if a <ay;,
T | —1420(0)-20%a)+ Q3 (@) +k(®  if a,5 <a<ay,.

In the first case we obtain the inequality
Q*(@)-(3+v35)Q(@+2 > 0,

which is satisfied for a > d,, (see equation (14)).
In the second case we obtain

—1420(a)—20%(@)+ 2*(a) < 1-20(a) + 2*(a),

which is satisfied for any a. Then the strategies ¢ and # are optimal in limit for
YR ENPY

9. Results for the duel (2, 4). We have

0 ' if Q(a) = Q(a,,) = 0.986429,
b, = {— 1+(1+15)0(a) if Q(a54) > 0(a) > Q(a5) = 0.882709,
—1420(0)—20%@)+Q%(@) if Qays) > 0(a) > Qla,,) = 0.853553;
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—14+(1+035)0(@)  if Q(az,) > Q(a) > O(d,,) = 0.918836,
~0X@)+0%)  if Q(d,0) > 0@ > 0(a;,);

{O if Q(a) = Q(a4),

(0 ' if Q(a) = Q(a,,),
V34 = {

24 v
Uaq =

C1+145)Q@ i Qaz) > 0(@) > O(d,e) = 0933827,
1-20(a)+Q%(a) if Q(d,,) = Q(a) = Qfay,).
10. Duel (3, 4). Let us cqnsider the dugl (3, 4), {a). Define £ and 7.

Strategy of Player I Reach the point a,, and if Player II did
not fire before, fire a shot at a3, and play optimally the duel (2, 4),
(1,_ dYa5.{ Ac, Ya5,{). If Player II fired, play optimally the duel (3, 3).

Strategy of Player ILIf Player I did not fire before, fire at {a,,» and
Play optimally the duel (3, 3). If he fired (say at a'), play optimally the obtained
duel (2, 4), <1, @’ A ¢, a’). If Player I did not reach the point a,,, do not fire,

The number a,, is determined from the equation

(16) V34 = P(a34)+Q(a3,)0%% = —P(a34)+ Q(as4)v35 gvgh,

where a,, denotes a random moment, {a,,,) < Gu, < {a,,,) +a(e), distributed
according to an absolute continuous probability distribution in the above
interval, a(e)—0 if ¢—0.

Assume that

(0.986429 =) Q(a,4) = Q(a34) = Qlazs) (= 0.882709).
From (16) we obtain
(17) (14055 0%(a34) —(3+033)Q(a34) +2 = 0.
Since '
35 > 0013757, vaq = 0.129435,
we have
(18) 0(as,) = 0903576,  v%, = 0.020530.

To prove that ¢ and # are optimal in limit for this a5, let us assume that
Player II fired before {as,), @ < a,,. In this case we have

K(¢; ) 2 —P(a)+Q(a)vs3—k(#)
2 —P(as,)+Q(ay4)v33 —k(€) = v3y—k(é).

Suppose that Player II fired after <{a,,)+a(¢). Then under the assumed
connection between numbers ¢ and § ([18], formula (7)) we obtain

K(&; ) = Plagy)+ Qa3 )05 — k(6) = v3 —k(§).
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From the‘ above two inequalities it follows that
K(&; 7) > v34— k()

for any strategy 5i of Player II if the function k() is chosen properly.
On the other hand, if Player I fired before a,,, a' < a,;, then

K(@, & 1) < P(@)+Q(@)0%s+ k(@)

1—Q(a)+k(§) if @ < ay,
1-20()+(1+v35)Q%(@) +k(E)  if a,, S a<ay;.
Both functions are increasing ones of the variable a'. Then
CK(d, & 1) < 1-20(a5) +(1+53) 0%(a50) + k(D) = 03 +k(9),

which can be seen from (16).
Suppose that Player I fires at {a;,). For such a strategy ¢ we have

K(£§ 7 < Q2(434)U3334+k(5) = Qz(a34)03’3+k(é)
>~ 0012431 + k(&) < v54 + k().

If Player I did not fire a shot before or at {a,,) but reaches this point,
then

K(& 1) < — P(a30)+ Q(a34)v33 + k(E) = 034 + k(D).

If, finally, Player I never reaches the point a,, and never fires, then

K(& n) =0 <vis.

Thus the strategies ¢ and #n are optimal in limit for a < a,,.
‘Let us notice that these strategies are also optimal in limit for the duels
(3,4), a, anc) and (3, 4), (2, a, anc) if a<a,,. :

11. Duel (4, 4). Let us consider the duel (4, 4), {a). Define £ and 7.

Strategy of Player I. Reach the point a,, and if Player I did not
fire before, fire a shot at a%, and play optimally the duel (3, 4), {1, >ais
{Ac, Yase). If Player 1I fired, play optimally the duel (4, 3).

Strategy of Player IL If Player I did not fire before, fire at {a,,> and
play optimally the duel (4, 3). If he fired, play optimally the duel (3, 4). If Player
I did not reach the point a,,, do not fire.

We assume that

(19) Vgq = P(ay4)+Q(as)V5% = — P(agq) +Q(a44)043-

Since vy, = 0.230895 (see [21]), if a,, < a;, we obtain
(20 =—=0, .
) 0O(ay,) Ewy—y 0.904828
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Then a,, < a,, and the strategies ¢ and n are well defined. Moreover,
(1) Va4q = —1+(1+v,5)Q(a,,) = 0.113748,

To prove that the strategies & and # are optimal in limit suppose that
Player I fires before a,,. Then '

K(E; d, fio) 2 —P(@)+Q(@)vy3—k(€) = — P(a0)+ Q(a4s)vs — k(8.
If Player II fires after <a,,>+ua(e), then
K(&; 1) = Plage) + Q(a  )v5% —k(E).

Since equations (19) hold, Player I assures in limit the value v,,.
On the other hand, when Player I fires before a,,, a’ < a,,, we have

K@, &; 1) < P(d)+0(@)t5s + k(@) = P(@)+Q(a)v3s+ k(&)
< Plagg)+Qau) v5% +k(é) = vy, +Kk(E).
When he fires at <a,,>, we obtain
K(&; 1) < 0X(@,43)055 + k(@) = 0105970+ k(&) < v,q +k(8).

When he intends to fire after {a,,> or not to fire at all, we get

K(& 1) < —Plag)+ Q(ag4)v43 +k(E) = vy + k().
Finally, when Player I never reaches the point a,, and never fires, we have
K(Em=0<0,

The optimality in limit of the strategies ¢ and # is proved.

It is easy to see that these strategies are optimal in limit also for the duels
“, 9, 1, anc, a) and (4, 4), {2, a, a A c). Each of these duels will be also
denoted by (4, 4). ‘
[2- Duels (m, 4), 4 < m < 25 (and some others), are solved by the author in

1].

Noisy duels with retreat after the shots are considered by the author in
[143[16]. | |

For other noisy duels see [4], [8], [12], [24].
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