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0. Introduction. Let x4 be a probability measure on R, the real line.
Let f: R—R be an additive function which is. u-measurable (i.e. f is meas-
urable with respect to the u-completion of Borel subsets of R). We show
(in Theorem 1) that there exists a constant ¢ such that f(zr) = cx a.e. (u)
if 4 is a symmetric measure which satisfies the following

ConDITION A. There exists a sequence of probability measures u,,
with u,(@Q) = 1 for all n, where @ stands for the rationals, such that we
can write u as the infinite convolution

b= g% ... %U % ...

If is easy to see that Lebesgue measure on R is equivalent to a sym-
metric probability measure satisfying A so, in particular, we have reproved
the theorem due to Fréchet [2] which states that any Lebesgue meas-
urable additive f is in fact linear. (Note that D = {z | f(x) = cx} is an
additive subgroup of R. Theorem 1 shows that the Lebesgue measure of D°
is 0. It is then easy to argue that D = R.) Our theorem is more general
than Fréchet’s, since there exist many singular symmetric probability
measures on R satisfying Condition A.

In the second section of this paper we construct a Borel measurable
rational subspace W of R on which a sequence 4, of additive “coordinate”
functions is defined. We then apply this construction to show that

(1) There exists a continuous probability measure g satisfying Con-
dition A and a u-measurable additive function f such that f(z) =b
a.e. (u) with b # 0.

(This shows that the symmetry hypothesis was necessary in the™
preceding result.)

(2) There exists a symmetric, infinitely divisible probability measure u
on R such that the measures u‘ for ¢ > 0 are all mutually singular.

The existence of a measure u as in (2) is perhaps new. Its construction
is, in any case, novel and involves the following idea: Let 8'’ stand for
the set of all integer-valued functions 2 on [0, o] with 2(0) = 0 and 2
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continuous from the right. Let

8 = {2 |2¢8" and supsup|B,,(z)| is finite},
n m
where

m=2"+k with 0<k<2" and Bp,(z) = z(—(k-iz_Tl)n)—z (%)
Let 8 be the vector space spanned by rational linear combinations
of elements of S’. We show that there exists a 1-1 additive Borel meas-
urable function F: S—R.
The idea of using funection space techniques for constructing measures
on the real line is not new. Kaufman in [3] has a similar point of view.

1. Additive functions on R.

THEOREM 1. If u i3 a probability measure on R satisfying Condition A
and f is an additive u-measurable function, then b, ce R are such that

f(@) =b+4cx ae (u).

Proof. u = py*...%u,*..., where u,(Q) =1. Let (2,%,P) be
a probability triple, where # is a o-field of subsets of £, and P is a proba-
bility measure on #. Let Z, be a sequence of independent random varia-
bles on (2, #, P) such that u, is the distribution of Z,. Since f is ad-
ditive, it follows that there exists a constant ¢ such that f(r) = ¢r for
every reQ). By the additivity of f we can write

f(f:zk(’w)) —C(S‘Zk(’w))

= [ Z"Zk(u»)—c f,‘zk<w>]+[f( Zw‘ Zy(w)) —c Z” Z(w)|
k=1 k=1 k=n-+1

k=n+1

for all points w in our probability space for which D’ Z,(w) converges.
k=1

(This is a set of probability 1.) Now the first bracketed term is zero a.s.,
while the second is P-measurable with respect to the o-field generated
by (Zu41yZpys, ---)- We conclude, by a modification of the Kolmogorov

0-1 law (cf. [4]), that
DARIA

is a.s. equal to some constant b. In other words, there exists beR such
that f(z) =b+cx a.e. (p).

CoROLLARY 1V If in Theorem 1 the measure u is symmetric (i.e. u(A)
= u(—A) for any Borel set A), then f(x) = cx a.e. (u).
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Proof. Since f(—#) = —f(z) for x¢R, we conclude that the random
variable f on (R, u) must have a symmetric distribution, which is im-
possible unless b = 0.

2. Construction of W and 4,. We start by defining certain sets W,
of real numbers for any positive integer k.

Definition. W, stands for the set of all # in R which can be written

in the form
k

-3(3+7)

n=1 rm—k
where a; = 41 or 0 for all » and all re[ — %, k].
LEMMA 1. Let xe W,. Suppose that

-] k n oo k n,
_ < LA _ v, (1)
=SS ) wa 2= 3 w3
n=l k n=l 'r=-—k

o —

are two different representations of x, where by as well as ay, takes values in
{1, 0, —1}. We claim that the sum

k

1 r42n
Ho) = ot (3)

r=—k

k 1\r+2"
Bi(e)= ) b} (5)

r=—K

and the sum

are equal for n > k+1 (and thus the numbers A% (x) are well-defined func-
tions of x in W, for n > k+1).
Proof. Let us write A} for A} (x) and Bj; for B}(z), where the depen-

dence on x is suppressed, since x is supposed fixed. Suppose now that
AY +# BY and that N >k +1.
We write

N N
Sy =) Ay and Ty= ) B
n=]1 n=1
Case 1. Sy # Ty. '
Noting that (1/2)¢+?" divides 8y and Ty and also that

Sy+ D Ay =Ty+ ) Bp=u,
n=N+4+1 n=N+1
we conclude that

1 k+2N o
® (5)  <msv-twi=| 3 az-m)
n=N+1
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However, the right-hand side of inequality (a) is not greater than
4%(2%)(4/3)(1/4)*". Tt follows that

3(2) anr < o2
(3) wom<(3)

which cannot occur, since N > k> 0.

Case 2. If Sy = Ty, then, since AY # BY, we must have Sy_,
#* T'n_,. Reasoning as in Case 1 we conclude that

k 2(N-1)
13 oo < 5)
4 2

which cannot occur, since N —1> k> 0.
COROLLARY 2. If xe W, and j > k, then A}(x) = A%(x) for n> j+1.
Proof. This follows since A} (x) is well defined for n > j+1.
We note the following facts:
Facr 1. IFf xe W, and m is a positive integer, then mxe W, .
Facr 2. If we W, and ye W;, then o+ye W, ;.
Facr 3. If m is a positive integer with xe W,, then
A} (mx) = mA}(x) for m>j+1>mk41.
(This follows from Lemma 1.)
Facr 4. If xe Wy, and ye W,, then

AP (x+y) = Af(x)+ AP (y)  for 'n>j‘+1> E+r+1.

(This follows from Lemma 1.)
We now write

W =UW, and W=U rW.
reQ

k=1

oN

By Facts 1 and 2 it is clear that W is a linear subspace of R if R is
treated as a vector space over the rationals.

Definition. For e W let p(x) be the least positive integer p such
that pre W, for some positive integer k. Let k(x) be the least k > p(x)
such that xp(z)e W,. We define, for » > k(z)+1,

A, (@) = (p(2))" Afg(ap(2)).
LEMMA 2. We claim that, for each xe W and ye W, there exists a posi-
tive integer k(x,y) such that
A, (@+y) = Ay @)+ A4,y)  for n> k(z,y)+1.

Proof. Let k(z,y) =2k(@)k(y)k(z+y). Now ap(x)e Wy, and

YP(Y)e Wiy It follows that zp (y)p(®)+yp(¥) P (®)e Waapy) by Facts 1
and 2.
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We claim that, for » > k(z,y)+1,
(p(2+9) Ay (= +9)P (2 +9))
= ((2)) ARy (20 (2)) + (P (9)) ) Aoy (v (9)).
However,
(1) Afew(@+9)p(@+9)p(@)p(Y) = (@) P(Y) Ale (@ +y)p(2+Y))
for n > k(2,y)+1 by Facts 1 and 3, since

k(z,y) = k(z+y)p(z)p(y).
Also

(2) Aken(@+¥)p@+9)p(@)2(¥) = p(@+y) Abey((@+v)P(2)P(¥))
for n > k(x,y)+1 by Facts 1 and 3, since
(@+y)p(2)p(y) = op(Y)p(2) +yP (¥) P (%) € Wakiapk)s

while
k(z,y)=2p(z+y)k(z)k(y).
Finally, we have
(3) Al (@p(@)P(y)+yp (2)p(¥)) = Alep(2P (@)D () + Az, y (yp () P (9))
for n > k(z, y)+1 by Fact 4, and we can then write

(4) e (@D (@)D (Y) = p(¥) Ale.y (@p (@),

(5) A (yP(@)p(¥) = p(2) Al (vp (1))

for n > k(x,y)+1 by Fact 3.
If we put equalities (1) through (5) together we see that our claim
is proved.
The following lemma can be proved in the same way as Lemma 2.
LEMMA 2°. For r,s¢Q and x,ye W, there exists k(r, s, x,y) such that

A, (rz+sy) = rA,(x)+34,(y) for n> k(s,r,z,y)+1.

3. Symmetry is necessary in Theorem 1. Let (X, | n > 1) be a sequence
of independent random variables with

P[X, =1] = P[X, = 0] =%.

1\?"
(5) Xn

Let
X = _

n=1
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and let 4 be the probability measure on R induced by the distribution
of X. It is clear that u(W) = 1. For e« W we define

N

f*(w) = lim (%

Nooo

2"‘A,.<w>)

n=k(z)+2

if this limit exists. Since, with probability 1, 22" 4, (X) = X,, it follows
from the strong law of large numbers that the set W* of z in W, where the
above limit exists, is Borel measurable and has x measure 1.

LeEMMA 3. W* is a rational linear subspace of W and f* is additive
on W*.

Proof. Let #, ye W*. Suppose that

N

lim (— 22"A,,(w)) = f*(x)
N->oo N
n=k(x)+2

and that
N

1 n *
lim (F D A,,(y)) = f*(v).
N0 WY o Jer+2

Now v+ye W and
N

fa+y) = tim (3

N-»o00

22"An<w+y))
n=k(z,v)+1
N N

(1 ” (1 "
— lim (Iv— Z 2 A,,(:v))-{-ﬁlg; (F Z 2 A\,,(w))

N0 n=k(z,v)+1 n=>k(z,y)+1
=@ +*().
The proof that, for any rationals r,s,rz-+sye W* and f(rz+sy)
= rf(x)+8f(y) is equally easy.
We can extend f* to an additive function f defined on all of R by using
a Hamel basis well-ordering type argument. Since f will agree with f*
on W*, it follows that f is u-measurable. Also, it is clear, by the strong
law of large numbers, that f* = 1/2 a.e. (u), i.e., f = 1/2 a.e. (u).
The following lemma fills out the picture:
LEMMA 4. Let u be as above; we claim that u is continuous (i.e., for
any weR, we have u({x}) = 0).
Proof. We have
N n v
1\ 1\Y
P 2E) = -=<()

Nl
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since there exists at most one combination of ¢, = 0 or 1 such that

N on
2 3 1
En (E) = I.

If we now let uy stand for the measure induced on R by
N n
1 2
b (—) X,
w—t \ 2
n=1

while u, stands for the measure induced on R by

oo

> )

, n=N+1
then we have

1\Y
un({x}) < (—2—) for all «,
and |
pl{e}) = [un({z—yhdiy(y).
R

It follows that u({x}) < (1/2)" for any N.

4. An additive function from § to R. We start by constructing a
function F from 8’ to W' as follows. For ze8' and m = 2"+ k, where n
is a non-negative integer and 0 < k < 2", we write

B,, (2) = z(n(k—:_l.l) —2 (1&;?)
2 2

We can assume that |B,(2)| < K(2) for some constant K (z) for all
m=1.
We write

o 1 on
Fl(z) = ZB,,(z) (g) .

It is clear that
B (121t ... +a,2,) = a1 By (2))+ ... + 8y Bpy(2,)

for 2,,...,2,¢8 and a,,...,a, any integers. Hence, from Lemma 1 it
follows that
(%) F(a,2:+ ... +a,2,) =a, F(z)+ ... +a,F(z,).

We extend F to 8 by defining
F()=r,F(z)+ ... +r,F(2,) for z=rz,+ ... +7,2,,

11 — Colloquium Mathematicum XXXVI.2
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where 2,,...,2,¢8 and 7, ...,7,¢Q. To check that F is well defined
suppose that 0 = r,2,+ ... +7,2,, where 2, ...,2,¢8 and 7y, ...,7,€Q.
We can write r; = p;/q for some integers p; (ie[1, ..., n]) and ¢. It follows
that

0 =pi12,+ ... +DP,2,
and hence, by (%),
P F )+ ... +P,F(2,) =0

which implies that F is well defined.

To check that F is 1-1 we notice that if 2z # 0, then the sequence
B, () will have infinitely many non-zero terms and hence, by Lemma 1,
F(z) will not be zero.

We endow 8 with the smallest o-field #g for which all evaluation
functionals e, are measurable. (For te[0, c©) we write ¢(2) = 2(t) for
ze8.) It is then clear that the functions B, are all measurable with res-
pect to Hg, and hence F is measurable with respect to %y.

We now show that (8, #5) supports a Poisson process.

LEMMA 5. Let (X (t)|1> 0) be a stochastic process with X (0) = 0 a.s.
such that X (t) has independent increments X (t) — X (8) which are Poisson
of mean t—s for s <t. Then

Plsup sup |B,(X)| < ] =1,
n  2M<m<aontl
where
(k+1)n

kn
Bm(X)=X( - )—X( ") for m = 2%+ k, 0<k< 2"

2_n
Proof. Let
a, =P[ sup |B,(X)| > 2].

2n<m<2n+1
We show that ) a, < oo, hence, by the Borel-Cantelli Lemma, we have

sup  |Bh(X)I<1

M<m<ant1

for n sufficiently large. We write

2" -1 #
a, =1- [ [ P(Ba(D) <11 = 1—[“1’(‘2_11)(”%)]
m=0

1\ n \T" 1\ 1
~l-i-=) 1+ ~1-{1——=] ~—.
[( 2)( i 2)] ( 4") 7"

Notation. Let 4 be any measure on E. For ae R we denote by T,u
the measure defined by T,u(B) = u(a~'B) for any Borel set B.
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THEOREM 2. There exists a symmetric infinitely divisible probability
measure p on R such that the measures

Tal,u'l* ces *Tan,u‘ﬂ and Ty p’rx ... =T, pom

are mutually disjoint unless nm = m and there exists a permutation o of
[1,...,n] such that b; = a4y and 8; =ty (ay, ..., a, are positive rational
numbers no two of which are equal and the same holds for b, ..., b,; the
numbers t,, ...,t, as well as 8,,...,8, are points in (0, oo); the measures
(#f|te[0, o0)) denote the convolution semigroup of measures in which u is
tmbedded as u' = u).

Proof. Let (Z(t)|te[0, o)) be a stochastic process with Z(0) = 0
a.s. and assume that Z(¢) has independent time homogeneous increments
with

Efexp[iv(Z(t) —Z(s))]} = exp|lt—s|(cos(v) --1]]
for s,te[0, ), veR.

(This is the “symmetrized” Poisson process.) It is a well-known fact
(see, e.g., Breiman 1], Problem 13, p. 316) that there exists a probability
measure P on (S, #g) such that the evaluation functionals (e,|te[0, oo))
have the same finite-dimensional distributions as (Z(t)|te[0, )). We
define p to be P-F-Y, i.e., the measure induced on R by the measurable
function F: S—R. Now, for any =, there exist independent processes
Zyy ..., Z, on [0, oo) such that Z,(0) = 0 a.s. and

E{exp[iv(Z,(t) — Zi(3))]} = exp [% [t—s](cos(v)—l)] for ke[l, ..., n]:

It follows that P = (P,)" for some probability measure P, on (S, %y).
Letting uy, denote P,-F! we have u = (u;;,)" and this implies that u
is infinitely divisible. It is clearly a symmetric measure, since P is sym-
metric and since F(—z) = — F(z) for all z€S.

Now, if Z%,...,Z!» denote independent processes on [0, co) with
Z¥%(0) = 0 a.s. and

Flexpliv(Zi(t) —Zik(s))]} = exp[t|t —sl(cos(v)—1)] for ke[l,...,n],
then whenever P’ is the measure induced on S by a,Za1+ ... +a,Z
we have

P -F-Y = Tallutl* - *Tan/,c'n

using the additivity of F.

Letting Z71, ..., Z» be processes corresponding to Ty pt% ... T, p'm,

in the same way we remark that if P’’ corresponds to the measure induced
on 8 by the process b,Z71+ ... +b,Z%m=, then it is easy to check that the
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measures P’ and P’ are mutually singular unless the conditions of the
theorem are met. (Just check that the distributions of (e,,; —eé,|n > 0)
are different under P’ and P"’, and then use the Glivenko-Cantelli Theorem
(see Loéve [4], p. 20).)

Since the mapping F is 1-1, it follows that the measures

Tal‘u‘lt *T%y'" and le'lt oo x Ty utm

are mutually singular unless the conditions of the theorem are met.
As a particular application of Theorem 2 we have

COROLLARY 3. There exists a symmetric infinitely divisible probability
measure p such that the measures (,u‘ |t > 0) are all mutually singular.
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