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Basic concepts of the difference geometry

by CzesrAw WoZNIAK (Warszawa)

Abstract. The difference geometry discussed in the paper is based on the concept
of difference structure prescribed on the finite or countable set D and on the concept.
of the connexion in the bundle of vector spaces over the set D endowed with the.
difference structure. These concepts were previously introduced in the diseretized
formulation of the mechanics of deformable bodies. The difference structure on the
set D enables to assign to an arbitrary real valued function ¢: 8§ — R, § « D, the
set of real valued functions A p: S4B, S48, A=1,2,...,m (m is an order
of the difference structure) which are called the first differences of @. In this contex
the concept of the difference structure on D leads to a generalization of the known
finite difference caleulus. Defining the concept of connexion in the bundle of vector
spaces over the set D, on which the difference structure is prescribed, we introduce.
the connexion matrices and curvature tensors in such bundle. The transformation.
formulas for these objects have the form similar to the known formulas of the differ-
ential geometfry. Using this approach we can formulate the absolute difference cal-
culus which is another generalization of the finite difference calculus.

Introducton. The difference geometry has Dbeen formulated in the
connexion with the mechanics of discretized bodies, [5]. The difference
geometry i3 based on. the concept of what is called the difference manifold:
(cf. Section 1) and on the concept of the connexion in a bundle of vector
spaces over a difference manifold (cf. Section 2). This last concept gives
& position to introduce also the notion of curvature in the difference
geometry (cf. Section 3). In this paper we also deal with the problem
of a bundle of subspaces over a difference manifold and we introduce:
the concept of projections in such bundles (cf. Section 4).

Notations. The indices 4, &, ... take the values I, II,...,m, the.
indices a, b, ... run over the sequence 1,2, ..., # and the indices q, §, ...
have the range 1,2, ..., n; n = #. Summation convention holds. Symbaols.
fad,f_ad, ... stand for f,(d), f_,(d),..., respectively, and f_, =

1. Difference manifold. Before we pass to the basic concept of a differ-
ence manifold, we have to introduce the auxiliary notion of a differ-
ence structure defined on a finite or countable set.

DeriniTION 1. Let D be a finite or countable set of elements d, d e D,

and let m, m4+1 <1')=, be a positive integer. We say that a difference.
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structure of order m is prescribed on D if thére is given a sequence of m
.one-to-one mappings f4: Dy —>D_,, A =1,11,...,myD, s D, D_, < D,
such that:

m
*UDyvDy) =D,

Ae=1

90 Lé D, #£0)v (ﬁp_,, £ 0),
3° A A (fal # D),

A deDy

£ AN N fad =fod) = (4 = P)].

4 @ deDAnD,p

If a difference structure of order m is prescribed on D, then we can
«define, for each deD, the sets R; < {I, II,...,m}, Ly< {I,1I,...,m},
putting Ry: = {4|deD,}, Ly = {A|de D_,}. For an arbitrary subset
8 =D we can also define the subsets S,< 8, S_, € 8, putting 8,:
={d|f,de 8}, S_,: = {d|f.,de8}; some of the subsets S,, S_,, or
oven all of them, may be empty. In the same way we are able to define
the subsets Sy, 4, .., 4, S 84y, 4y, ..., 4,_p USING the formula 8, ,12
= {d|f,18de 84y, ag, ..., 4 1}, whele/Li +I, +II,..., +m, % =1,2,. ,s,
and s is an alblhary positive integer. For examp]e, we can write

Sa,m? = {d|fode S}, S—A,nv: = {d|fode S_4},
SA._¢: = {dlf—¢d€ SA}, S_A’_m: = {dlf_q)de S—A}'

Let ¢: 8 — R be an arbitrary real-valued function and let a differ-
ence structure of order m on D be given. It follows that there exist 2m

functions (1) d.¢: 84~ R, Ad49: S_4 — R, defined by
Aa0@d) Lp(fad)—p(d) and  d,p(d) S (@) —p(f_.d), respectively.

These functions are said to be the right-hand side and left-hand side
differences of the function ¢: § — R, respectively. Since all the first

differences A4 ,¢, 4 ap of an arbitrary real-valued function ¢ are also
real-valued functions, then we can also define the second and higher
-ordered differences of the function ¢. The second differences will be defined
as the first differences of the first differences:
Vi PRI E ‘S'A,ds - R, 4 AA‘P(d) ¢(AA?’(‘1))’

A9 84 _s — R, A.,A,lqa(d) = A,,,(AAcp(d

{1.1) dg 4 4p: S—A,cn - It, AwAA‘P(d) = A (AA‘P(‘Z
ApAsp: 8_y,_o B, AnuAA‘P(d) (

)y
)
¢(AA9’ d))-

(1) Some of them may he defined on empty sets.
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In the same way we can define the higher order differences of the function
@: 8 >R, putting A, 4, ...A,0= A4 (4, ...A49) for A, =1I,1I,
.ym; t=1,2,...,8 where s is an arbitrary positive integer.
In what follows we always assume that a difference structure of
order m is given on a fixed set D. Let us denote by y: D — R an arbitrary
real-valued function. It follows from Definition 1 that for each de D

there exist 1=1‘:d differences 4,w(d) and fd differences 4 4y(d), where
R, +T}d > 0. It also follows that there always exists a point de¢D for
which we have either exactly m differences A,y(d) or m differences
A 4(d); it means that m = ma,x(Ed, Ed), de D. Using Definition 1 it is
easy to prove that the differences 4,¢(d), A A@(d) always depend on the
function ¢ and that they are uniquely defined.

A difference structure on D is said to be regular if and only if

{1.2) fafod = fofad for (VO)(VA), (Vde [D4,e 0Dy, 4]).
If a difference structure on D is regular, we can prove that
(1.3) 4,4,9(d) = Apd,9(d)  for (VO)(VA)(Vg), (Vde [Dy,0 N Do 4])-

The proof of (1.3) is obtained with use of (1.1) and (1.2).
m
Now let § be a given subset of D, § < D, and put 8§, = () (8§, N S_4).
AmI

If 8, # O, then the subset 8§, = § is said to be the inferior of 8, and
08 = 8—8, will be called the boundary of 8. An arbitrary function ¢:
8§ ~> R has for each de S, exactly m right-hand differences A,0(d) and m
left-hand side differences A 49{(d), because .Rd = Ld = m for each de S,.
For each de 8 we have either B; < m or Ld < m; it follows that on the
boundary 08 not all the differences of the" function ¢: S8~ R
oxist.

DEFINITION 2. A pair (D, &), where D is a finite or countable set
and & is a given covering of D, is said to be a difference manifold if and
only if there exists a difference structure on D which determines the
covering & by the formula & = (Zy)s.p,, Where Dy: = {d|§d # 0}, and
each F; is a set of 1+1=§d> 1 points d, f,d, Ae R;.

The concept of a difference manifold has its origin in the mechaniecs
of discretized Dbodies, [5], where each de.D is a particle of a discretized
body and those particles are interacting only in subsets ¥ e &, which are
called discrete elements. The set of 1+T34 > 1 numbers wu(d), 4,9(d)
determines the function y: D — R in the discrete element /! = ;. Analogo-
usly, the L, numbers A,(d) describe the change of the function v if
we pass form a discrete element E; to the diserete elements B, ;, pro-
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mn

vided de | JD_,. Hence we see that the difference calculus given above
A=l

can be called the discrete element calculus and it constitutes a generali-

zation of the well-known finite difference calculus, where one deals with
functions defined on lattices in the affine space, [1].
Let us denote by &, the set of all discrete elements which contain

the point d. It is easy to prove that Ed is a finite number.
Thus we see that to each difference manifold (D, &) we can uniquely

assign the positive integer m z ma,x(i'a, Ed)—l, Ee &, de D.
DrrinITION 3. Let (D, &) be a difference manifold. Each difference
structure on D of order m = max(ﬁ, ?d)—l, Ee & deD, which deter-
mines the covering & (in the sense of Definition 2) is said to be an admissible
difference structure on (D, &).
Suppose that an admissible difference structure on (D, &), regarded
as o difference structure on D, defines the interior D, of D, ie. Dy, =

m

= (DsN"D_,) #9. Then for each deD, we have Tﬂ’d =m+1. It
A=1

follows that each admissible difference structure on (D, &) defines the
same interior D, and the same boundary 0D = D —D, of D. The trans-
formation formulas for left-hand side and right-hand side differences of
an arbitrary real-valued function y: D — R, under a transition from one
admissible difference structure on (D, &) to another, will be analysed
in a separate paper.

2. Bundles of vector spaces. In what follows we assume that a differ-
ence manifold (D, &) is given and that an admissible difference structure
(of order m) on (D, &) is prescribed. Let us assign to each de D the n-dimen-
sional vector space V7%, and let us denote by V3" the dual vector space.
In the mechanics of discretized bodies the space Vj is the configuration
space of the particle d, and the space V;® is the space of generalized forces

acting an the particle d. The spaces V = |J V% and V* = U V}* are
deD deD

bundle spaces in the bundle of vector spaces Vg, de D, and in the bundle
of vector spaces V3", de D, respectively. The set D is the base space in
these bundles, each V7% or V3" is the fibre over the point de D, and the
linear transformation group I” is the group of the two introduced bundles.
Such vector bundles are L"-equivalent to a product bundle, [4].

Let us denote by .D; the subset of D which is covered by &3 (cf.
Section 1). The concept of connexion in a bundle of vector spaces will
be introduced for each bundle V3, d'e D;, independently.

DEFINITION 4. A vector v(f,d) from the space V7,; with components
v?(f4d) is said to be shifted from V¥ AL V2, if its components in V7 are
given by ¢ (d) = [65+G45(d)]0°(f4d), where (G 5(d)) is, for each A< Ry,
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a given » X#n matrix, which satisfies the condition
(2.1) det(05+G43(d)) # 0
and is called the connexion matriz.
Let us denote by #: D — V an arbitrary cross-section over D in

the bundle of vector spaces. Any such cross-section will be called the
vector field on D.

DEF]:NITION 5. The vector field d,v: D, — V with components given
by 6,40°(d) = vy (d) — 2P (d) = A,0°(d)+ G5 (d)v"(f4d) is called the right-
hand side absolute difference of the vector field v: D — V with components
2#(d), de D. If 6,4°(d) = 0, then the vectors »(d) and v(f,d) are said
to be parallel.

Analogously, in order to define the left-hand side absolute difference
of the vector field v: D — V at the point de D_ 4, let us denote by v_,,(d)
the components of the vector v(f_,d) after a parallel transport (i.e. after
shifting) from V} , to Vj. Let us put vf_s(d) = [85—G5.(d)]0°(f_44),
where G3,(d) are, for each A< IL;, the elements of an % X n matrix satis-
fying the condition
(2.2) det(d5 —@54(d)) == 0.

Further, let us assume that if of_,(d) = v*(d), then the vectors with
components v*(f_,d) and »*(d) are parallel. It follows that

(2.3) (05 +Gap(f_ad)) GLa(d) = Gua(f_ad)

holds for each de D_,, 4. From (2.3) we conclude that for each de.D_, ,
and each AeR; N L, the matrix (G7, (d)) is uniquely determined by the
connexion matrix (@,5(f.,d)). The vector with components 8 ,407(d)
= 0*(d) —v0_ 4 (@) = A,40°(d)+654(d)0°(f_,d) is called the lefi-hand side
absolute difference of the vector field v: D — V at the point de D_,. All

vectors d,v(d), de D_,, form a vector field on D_,.
Let A2%(d) be the elements of any non-singular # X # matrix, defined
f01 each de D, and let A%(d) be the elements of the inverse matrix,
AZ(d)AG(d) = 65. We shall transform the components of the vector
4 v(d) a,ccordmg to the well-known transformation formula

8,47°(d) = A5(d)8,0*(d) = A5(d)[44°(d) + G 45(2) 0" (f44)]
= AS(D)[AF(fa@)0* (f4d) — AZ(D)0* (d) -+ G a5 (@) A5 (f4@)0" (f4 )]
= 4,47°(@) +[45() 44 A5(d) +A5(d) AF(f 4 D) G 45 (d)]0" (f4)

Thus we arrive at the following theorem.
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TEEOREM 1. The transformation formula for the connemion matriz has

the form
(2.4) G45(8) = A5(d) A, A5(d) + A%(d) A (F40) G 45(d)

for each de D, and for a gimm Ade Ry,
In the same way we can prove that the following formula holds

(2.6) 2(d) = A3(d) 4, A3(d) + A%(d) A} (f_48)G54(D),

where de D_,. Let us note that (2.4) and (2.5) are given in a fixed admis-
sible difference structure on (D, &£).

All preceding considerations can be applied if we are to introduce
the connexion in the bundle of the dual vector spaces V3", de D, with
respect to the same difference structure on D. For an arbitrary covector
field u: D — V* (which is a cross section in a bundle of dual vector spaces
over D) we shall define the right-hand side absolute differences &, u:

D, — V* and the left-hand side absolute differences 6,u: D_, — V*,
putting  8,u,(4) = 4,4, (@) +6.2(d) #5(fad) and 04%,(d) = 4,,(d)+
+GM (@) 1up(f-ad), 1espect1ve1y, where G-A (d), G A(d) satisty, for each 4,
the conditions det(6”+GA£ (4)) #0 and det(s] — —@ 24(d)) # 0. Moteover, two
covectors with components #,(d) and u_(f,d) are said to be parallel, if

and only if 6,u,(d) =0 and 8,u,(f.d) = 0. From the last conditions
follows that the following relation

(2.6) (5”+GA (f-ad) )G al@) = G4,

holds for each deD_, 4. In Virtue of 6,u,(d) = A%(d)d,4u,(d), u,(d)
= A7 (d)uy(d) and A3(d) Ag(d) = &3, after simple calculations, we arrive at

GA(d) = A%(d) A4 A(d)+ A2D) AL(FADGL(@);  deDy,

(2.7 & _
G24(d) = A2(d) 2, AL + AXDAYf_ 1 @Ba(@);  deD_,.

*
The n X n matrices with components @,#(d), given for each /A and each
de D4, are said to be the dual comnexion matrices. According to (2.6),

*
the matrices (G%,(d)) are uniquely determined by the dual connexion
%

matrices (G,lf(d))._ Equations (2.7) represent the transformation formulas
for all those maftrices.

The components of an arbitrary vector in ¥V} can be represented
in the form +°(d) = ef(d)A”, where A¥) are real numbers and ef(d)
are components of the vector basis in V3. We can also write u,(d)
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= ¢{)(@) 44, where A, are real numbers and e!P (d) satisty the conditions
6 (d) el (d) = 62. We conclude that the following identities hold:

25) Gay(d) = —e) (f48) d 460 (d) = ey (d) 4465)(d),
éA%(d) = — el (fad) 446 () = € (d) A60(d), deDy,

where 0,6, (d) = 0, i.e. the vector basis in V3 and V}‘A,z are assumed
to be parallel. In virtue of (2.8) we arrive at the following theorem.
THEOREM 2. Belween the connexion matriz (G,{;(d)) and the dual con-

neTion matriv (E‘r,,‘;(d)) there exists the relation
(2.9) (654 Ga5(@)G4L(A) = —Gap(d), deDy,

which uniquely determines the dual conmewion malriz by the conmewion
matric and vice versa.

The proof of the second part of this theorem follows directly form
(2.1). Thus we can. see, that the connexion in the bundle of vector spaces,
as well as the connexion in the bundle of dual vector spaces, is determined
by the connexion matrices (G ,5(d)), de D,.

Now let us denote

(2.10) {a} = Ay 0g...0p, 6{?})} = e(zb e‘gg)‘ ‘e 3(5%1) ’ 0&5)} = 6(£{) 6(2) N 691?) 5

where T' is a given positive integer. Let us introduce in the usual way
the components of covariant and contravariant tensors assigned to the
point de D, and let us denote them by g, (d) and 2 (d), respectively.
In the same way as in the preceding considerations we arrive at the fol-
lowing formulas:

840H(@) = 4,0"Nd)+ G (@) o7 (f,d),
(2.11) *
0 4% (d) = AA'“'{a}(d)+Gam(d)“(y}(f4d)r deD,,

where we wrote:
QA2(@) = ey (@) A4ef§2(@), A46P(d) = G5(@) e (F1),
(2.12), %
G.‘im(d) = 6{£€)}(d)AA6&’g)}(d)’ A 460(d) = Gaa(d)efgy(fad); deDy,

and where the vector basis: ey)(d) in V3 and ey, (fad) in V7 ; are assumed
to be parallel. The tensors with components 6,9 (d), &,u,(d), are
called the absolute differences of the tensors with components v'%(f,d),
v d) and ug(fad), u(d), respectively. For T =2 we obbain from
(2.12)

Gai2(d) = Gl (d) 62+ 6,1G 452 (d) + G 1) G 52 ().

Y1V
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In the more general case we obtain the formula

*
'511?0{"}{;;}(‘3) = AAw{a}{,a}(d) + GA{;}(d)’w{" {p}(fA + GA i w{,, fA deD,,

where {a} = a;0,...07, v} = vye-- vm {8} = B1Bs-..Bs, {6} = ‘5152-~531
and where T, § are given positive integers.

In an Euclidean space the concept of the absolute differences of
tensors can Dbe introduced by means of the notion of shifters, [2], which
are related to the connexion matrices by the formula g§ = 83(85+G45(d));
where g5 are components of a shifter and where d, f,d, are a pair of points
in an PBueclidean space. Of course, it is a very special and simple case,
in which each vector space V% is the same Buclidean space. The same
problem but in a somewhat changed form was introduced in the book [3],
where instead of shifters, the differences between unit tensors and shifters
were used.

3. Curvature tensors, Let now there be given a bundle of vector
spaces VY, de D, and a connexion in this bundle with respect to the differ-
ence structure on D. Moreover, let the difference structure on D be
regular (cf. Section 1). We denote by ve4(d), de Dy N Dy 4, the vector
in V% obtained from the vector v(f,fod), by shifting (of a parallel trans-
port) from V% ;. to Vi,qand then from V7, to V3. Applying the results
of the previous Section, we get

(3.1) viony(d) = [05+Gop(d)1[8 + G5 (fod)]0” (fafod)
= " (fafo @) +Coay ()0 (fafad),
where we ‘wrote:
(32)  Gouy(d) = G5(a)+Gop(d)+ AoG i (d) + Gop(d) Gy (d) +
+65(d) 4,8.4(d).
Let us assume that the parallel transport of an arbitrary vector from

Vi sea 10 Vg is independent of the way of transport. In this case the
relation G y(d) = G 49,°(d) holds. Denoting

(3.3) R,q5°(d) = 26G10.415(4) = 2[ 416G n5(d) + G (D) G5 (fra D)1,
Wwe can 'write
{3.4) Ryp"(@) =0, de Do N Dy 4.

Equations (3.4) represent the necessary conditions for the independence
of the parallel transport of vectors from V7 , ;to Vg, of the way of trans-
port. In general (3.4) are not sufficient condltmns, because the vector
from V§ ;.4 to Vg can be shifted in different ways (not only through
the spaces V7, or V7 ;).
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Let us now consider the special situation in which in the vector
spaces Vj, de D, there are introduced vector bases ef,(d), such that the
relations @ ,2(d) = 0 hold for each a, b and each de D, . In view of (2.4)
we obtain @gi(d) = A%(d)4,A3(d). It follows that

(3.5) Ap A3(d) = Ag(d)Gop(d), deDg.
After simple calculations, in virtue of (3.3) and (3.5), we arrive at
(3.8) Apd AS(d)— A,45A4%d) = As(d)Rmﬁu"(d): deD,y g N Dy 4-

The left-hand sides of (3.6) are equal zero (we consider in this section
only regular difference structures) and, since detA%(d) # 0, wo finally
obtain. conditions (3.4). Thus we see that equations (3.4) ecan be called
the compatibility conditions for equations (3.5); they represent the necessary
conditions for the existence of connexion matrices @G, .(d) equal to zero

at each deD .
By means of direct caleulations we can prove that the following

relations hold:
(3.7) 814 84y0%(d) = %Rmpﬁa(d)”ﬁ(fafmd) y deDyqo N Dy 4.

From (3.7) it follows that the transformation formula for the » X % matrix
with components B ,q4.°(d) (for each fixed A and @) has the form

(3.8) RAopa(d) = A:(d)Ag(fAfcp A) R 10,"(d).

Hence we see that the matrices with elements R ,qs5%(d) represent the
components of the two-point tensor, [2], given for each fixed A, ¢ and
for\de D, o N Dy 4. The upper index a in R, qs°(d) is assigned to the
space Vg, and the lower index f in R 44, (d) is assigned to the space V7 ;4.

DErFINITION 6. The two-point tensor with components.E,4s%(d),
given by equations (3.3) for each 4, ® and deD,, N Dy 4, i3 called
the ourvature tensor at d in the bundle of vector spaces over D and with
respect to the given regular difference structure on D.

All concepts previously introduced in this section have their duals
in the bundle of the dual vector spaces V;,'", de D. Defining the n X#
matrices with elements '

(3.9) Ropop(d) 2 2[4C03(@) + o (8) B (fro)],

given for each 4, @ and each de D, 4 N Dy 4, Wo can easily prove that
the following relation

#*
(3.10) O 8aytty (d) = 3R 40.° (d) up(fafod);, deDyqo N Dy y,
holds for an arbitrary covector field on D, with components u,(d), de D.

3 — Annales Polonici Mathematiel XXVIII.1.
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The transformation formula for the object defined by (3.9) has the form

(3.11) Ruop®(d) = AJ(fafod) Ap(d) Rua®(d).
Trom (3.11) we conclude that, for each fixed 4 and &, the » X n matrix

with components ﬁmﬁ“(d) represents the components of the two-point
tensor; the upper index a in (3.11) belongs to the space V7 ., while
the lower index # in (3.11) belongs to the space V3. This tensor is called
the dual curvature tensor at de Dy 4 N Dy 4, in the bundle of vector spaces
over D and with respect to the given regular difference structure on .D.
The dual of formula (3.5) has the form

(3.12) ApdB(d) = A%(@)Gof(d), deD,,

and the duals of the compatibility conditions (3.6) can be written as
follows:

*
(3-13) .RAQHG(-d) = 0, d€ -DA,{P an,A;
these conditions are necessary for the existence of the dual connexion

*
matrices G, (d) equal zero. According to (2.9) the corresponding connexion
matrices are also equal zero.

4, Subspaces and projections. Let there be given a connexion in the
bundle of #-dimensional vector spaces over D and with respect to a certain
difference structure on D. Moreover, let N be a given positive integer
such that N < n. For each de D we shall introduce the N-dimensional
vector space VY, which is agsumed to be the subspace of ¥7%. In the same
way as previously, we denote by V3" the vector space dual to V. Further,
we define the basis in each VY, de D, as the set of N vectors with com-
ponents C7(d), C;(d), ..., Cy(d). At the same time we introduce, for each
de D, the » x N matrix with elements OX(d), satisfying the conditions
05@)Cy(d) = 6%, K, L =1,2,..., N.

DrrinirioNn 7. By the projection of an arbitrary vector v(d)eV}
onto V¥ we mean the vector ‘v(d) with components ‘v (d) = C¥ (d)v°(d).
A.na,logously, by the projection of an arbitrary covector u(d)eVﬁ onto
V3" we mean the covector 'u(d) with components ‘ug(d) = 0% (d)u.(d)(?).

In what follows we assume that all vectors and covectors belong
oxclusively to the subspaces V& or V;Y, de.D. The absolute differences
of any vector field (i.e. the cross-section in the bundle of spaces V¥,
de D) are defined as the projections

(4.1) '6,05(d) = OL(d)d,0*(d), deD,.

() The indices I, L, M take the values 1,2,..., N. Summation eonvention
holds.
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From (4.1) we obtain

(4.2) 8400 (d) = A,40%(d) + G5 (@)™ (fad), deD,,
where
(4.3) G 5(d) = CL(d)4,05(d)+0F(@) 05 (fad)Ga5(d), deD,.

Now let there be given any covector field which is a cross-section in the
bundle of dual vector subspaces VY, de D. The absolute difference of
this field will be defined by

(4.4) "8aug(d) = AA'wL(d)+GA (@) upy(fad), deDy,
where

(45)  GH(d) = 0%(d) 4,0 (d)+C%(d) C¥ (£, )G L(d), deD,.

The N x N matrices with components &,%;(d), given for each A and
each deD,, are called the connexion matrices in the bundle of subspaces
, de D, with respect to the differences structure prescribed on D.
The N X N matrices (Gf7(d)), also given for each A and each de DA,
are called the dual conmexion matrices in the bundle of subspaces V3~
de D, with respect to the same difference structure. It is easy to prove
that the transformation formulas for G (d) and @ (d) have the form

Gip(d) = A3F (@) 4, AZ(d) + AT (@) AL (F4d) G (D),

(4.6) i‘ﬁ(d) A7 (@) A AY (d)+ AT (@) AR (fAd)GAL(d)i deDy;
det AM'(d) £0, AM(d)AK(d) = 61

If the difference structure on D is regular, then simple calculations show
that the following relations

84’009 (d) = ¥ Raor™ (@) 0" (fufad),

(4.7) 04 0 ug(d) = %'RAme(d) Uy (fafed); deDyo N Dy 4y
hold for any fields v(d), de D, and u(d), de D, where
‘Raor=(d) =2 [A[mGA]g(d) +G[¢|ﬁ| (d)GA]'},l(f[wd)];

* * * * .
‘Baox”(d) = 2[ 410G k(@) +Groik ()G iz (frod)], deDyonDy 4
From (4.7) we conclude that the objects with components 'R o7~ (d),

'ﬁA¢KL (d) are, for each A, ®, d, the two-point tensors, [2]. They are called
the curvature temsors in the bundle of vector subspaces over D and with
respect to the difference structure given on .D.

Now we are going to study the special case in which » =N+ .,
and where V¥ is, for each deD, the N-dimensional hyperplane »* == 0

(4.8)
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in the space V7 (“n" is fixed). In that case we assume that the indices
K, L, ... stand for a,8,... if o, f8,... take the values 1,2,..., N. Let
a connexion in the bundle of vector spaces Vg, de D, be given with respect;
to the fixed difference structure on .D. Let us denote

( VE(d) £ Gin (@), bag(d) = G.E@), bad)=Gnd),
4.9) » » x
WE@@) £ G (d),  hag(d) = G&(d), ha(d) 2G4 (d); de Dy,

and let us introduce the following operators:
BEp(d) = V5 (D)p(fad), Baxp(@ = bix(@)p(fad),
Bap(d) = ba(d)o(fad),
(4.10)  7nie(d) =A% (@)p(fad)y  Naxp(d) = hax(@)p(fad),

749(8) = hy()p(f4d),

where ¢(d), de D, is an arbitrary real-valued function. An arbitrary vector
field can be now represented in the form v*(d) = 6%v=(d)+ 62v(d), de D,
where a =1, 2,..., N, n, since ¥ =xn—1. Analogously, we can write
1e(d) = 8B ug(d)+8"u(d), deD, a =1,2,..., N, n. By (4.10) we get

8405(d) = "0,05(d)+pEv(d), 84v™(d) = 440(d)+Faxv™(d)+Pav(d);
(4.11) ba%g () = "04ug(d) +14xu(d),
O (d) = A% (@) + 05 ug (@) +n4u(d), deDy,,
where “n® is a ‘“dead” index. At the same time we obtain
8,05 (d) = 8,05 (d)+pEv(d), BS,40™(d) =d,0(d) +Baxv™(d) +¢_94?J(d)5
(4.12) Stz (d) = "0, ug(d)+74u(d),

8 atn(@) = 4 ,4u(d) + 5 ug (d) +74u(d), deD_y,,
where

8,05 (8) = 4,05(@) + G () 0" (f_ad),  FEv(d) =GRy (d)v(Fad),
B4z (d) L G (D) (F_4d),
(413) Ba0(d) £ @L(@o(f_ad), Brug(@) = 8 sug(@)+E2a(d) ur(f_ad),
Taxtld) & @y @ulf_ad),  TEug(d) 2 G5 (@ ug(f_ad),

Tau(d) & G4 (d)%(f_ad).

Moreover, let us assume that the difference structure on D is regular
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and that the relations R Ma"(d) = 0 hold for each de D44 N Dy 4. Instead
of RByox”(d) =0, Ryp,"(d) =0, Ry0,"(d) = 0, We can write

(4“14) 'RMKL(d) = ﬂ[Abva]K(d); '5[¢b ](d) ﬂ[Abﬂ(d):
Alabeoa(d) = 8100 .43(2) + Bro by (d),
where de Dy 4 N Dy 4. In analogy with (4.14) we can also write

*
(4.15) 'R_AmKL(d) = nwx,hﬁ'](d), '5[¢shA]x (d) = MAIE| hm] (d),
’Iﬂ{hmu(d) = "Gl (@) +10ohyg(d), deD, o 0Dy y,

and the above equa,tmns can be obta.med directly from R o (d) = 0,

RMK (@) =0, RAd,n”(d) = 0. In the special case in which each vector
space V3, de D, is the same three-dimensional Euclidean space, the pre-
ceding formulas reduce to the form given in [3].

It is easy to observe that nearly all relations given in Sections 2—4
have the form similar to the well-known formulas of the differential
geometry. In particular, equations (4.14),, have a form similar to the
familar Gauss and Mainardi-Codazzi equations and equation (4.14),
corresponds to the known symmetry condition of the third fundamental
tensor which describes an N-dimensional smooth surface imbedded in
the (N + 1)-dimensional Euclidean space. Thus we see that there is a formal
correspondence between formulas of the difference and differential geo-
metries.

The author would like to thank Prof. Dr S. Golgb and Dr W. Wali-
szewski for reading the manuscript and helpful discussion.
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