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1. Introduction. Consider a random undirected graph G, , on n
labeled vertices with no loops and multiple edges, in which each of (g)

edges occurs with a prescribed probability p =1—¢ (0 < p < 1) inde-
pendently of all other edges. The aim of this paper is to give some results
about the distribution of the number of pendant vertices in G, ,. A vertex
is called pendant if it is adjacent to exactly one other vertex, i.e. the degree
of z is equal to one.

Some authors have considered similar problems for random graphs
of other kind (see Meir and Moon [6], Na and Rapoport [7], Rényi [8]).
The formula for the probability distribution of the number of isolated
vertices in G, ,, i.e. vertices of degree equal to zero, is given by Frank [3].

2. Pendant vertices of connected graphs. Let us denote by P, the
probability that a random graph @, , is connected, i.e. for every pairz, y
of distinct vertices of @, , there exists an (¢, y)-path. It is known that P,
may be computed according to the recurrence relation

(1) Pr = 1‘2(211)1’.4“"-", n>2 and P, =1,

obtained by Gilbert [6]. This formula follows from the fact that, for
a random graph @G, ,, one and only one of the » following events for
8 =1,2,...,n is true: The vertex 1 is connected to 8 —1 other vertices
and no one of these 8 connected vertices has any edges to other n—s
vertices.

Now denote by Pr{V(n, k)} the probability that @, , is a connected
graph with exactly k¥ pendant vertices, ¥ = 0,1,...,n. We prove the
following result:
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THEOREM 1. Let n > 3. Then for k =0,1,...,n—1

n—1

SR YE (%) 8o
where
@) Sum = (o) (r—mipger-m-smpep,

and P,_,, 18 given by (1).

Proof. Let R, , be the probability that @, , is a connected graph
in which m (1 < m < n —1) fixed vertices are pendant, i.e. each of them
is an endpoint of exactly one edge. From the condition that the graph G, ,
should be connected it follows that the other endpoints of these m edges
are chosen from n —m remaining vertices. The number of all such connec-
tions is equal to (» —m)™. Since each edge occurs with the same proba-
‘bility p = 1 —g¢q, independently of all other edges, we have

R, ., = (n—m)"pmexp {[m(n —-m —1) + (?)]logq P, .
= {(n —m)pg*—""IH"P,__,

where P,_,, is the probability that a subgraph on #» —m vertices is con-
nected, given by (1). The probabilities B, ,, are equal for all possible m-sub-
sets of vertices, so the sum 8, ,, of E, ,, over all such subsets is given by (2).
Put 8,,, = P,. Then, by the application of the principle of inclusion and
exclusion (see, e.g., [2], ch. 4), we get the probability of the existence of
a connected graph with exactly ¥ (0 < k¥ < n—1) pendant vertices.

Let us notice that, for # > 3, Pr{V(», n)} = 0, since it is impossible
that a connected graph of order » > 3 has all pendant vertices.

We have computed numerical values of Pr{¥V (20, k)} which appear
in Table 1. We give these probabilities up to ¥ = 6, since, for successive

Table 1. The numerical values of Pr{V (20, k)} for some k and p

The edge probability p
k
0.10 0.15 0.20 0.256 0.30

0 . 0.000269 0.0257056 0.2 14446 0.5663471 0.815896
1 0.001487 0.068650 - 0.2566991 0.271272 0.144591
2 0.004202 0.093481 0.164269 0.075070 0.015487
3 0.007709 0.085817 0.073997 0.015473 0.001321
4 0.010212 0.059146 0.0261562 0.002240 0.000099
Y3 0.010255 -0.032230 0.007640 0.000393 0.000007
6 0.007968 0.014289. 0.001892 0.0000562 0.0000005
Py 0.050061 0.386284 0.745872 0.918378 0.977402
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k> 7, Pr{V (20, k)} tends rapidly to 0. The last row of Table 1 contains
the probability that G , is connected, which is the sum of Pr{V(20,k)}
overk =0,1,...,19.

From Theorem 1 we shall obtain the probability Pr{W (n, n+1, k)}
that @, , is a connected (n,n+1) graph with k¥ pendant vertices, where
by an (n, m) grapk we mean a graph which has n labeled vertices, m edges
and no loops or multiple edges. For this purpose we need the number
f(n,m) of connected (»,m) graphs. It is trivial that f(n,n+1) = 0 if
l< —1. Cayley [1] proved that

(3) f(n,n—1) = n""?,
and Rényi [9] found the formula for f(n, ), i.e.

(4) f(n, n) -_—_;_Z”‘s!(:‘)”n—c—x.

Recently, Wright [11] derived the recurrence formula for f(n, n+1)
for successive ! and n, namely

2(n+1+1)f(n,n+14+1) = 2((;)—n—l)f(n,'n+l)+

I+1

+ 2 (:")s(n—s) Zf(s, 8+h)f(n—8,n—8+1—h).

8m1 A=—1

Using the exponential generating function of f(n, n +1) Wright found
also the exact formulae for f(n,n), f(n,n+1) and f(n,n+2) which
depend only on powers of » and on the number

hm) = (f) #(n—a)*~",

8=1

and are of the forms

(5) 2f(n, n) = (h(n)/n) —n""*(n —1),
(6) 24f(n,m+1) = 0" (n—1)(6n*+3n+2) —14h(n)
and

1162f(n, n+2)
— (45n* + 386n + 312) h(n) — 40" % (n — 1) (56n° + 36n® + 18n + 12),

respectively. Now we can formulate the following result:

COROLLARY 1. Letn > 3. Then for k = 0,1, ..., a—1andl = —1,0, 1,
coy m(m—3) /2
(7) Pr{W(n,n+1,k)} = g(n, n+1, k)p*+igti-sn-2dn,
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where
n~—1
8) gm,n+1,k) = 2( —1)'”*"(,’;) (’,’:) (B —m)™f(n —m, n—m+1)

18 the number of (n, n+1) connected graphs with k pendant vertices.
Proof. In Theorem 1 we put

(9) Ppp =f(n—m,n—m+1)p" ™exp {[(” —2-m) —(m —m+l)] logq} .
According to formula (7) and to relations (3), (6) (or (4)) and (6) by
the application of a computer calculations, we get the numerical values

of Pr{W (6, 6 +1, k)} which appear in Table 2.

Table 2. The numerical values of Pr{W (6, 6+, k)} for some I,k and p

l
D - k

-1 0 1
0.3 1 - 0.03177 0.04123
2 0.02471 0.058256 0.01816

3 0.04942 0.01589 -

4 0.01441 - -_

5 0.00041 - -
0.4 1 - 0.04458 0.08999
2 0.02229 0.08173 0.03963

3 0.04458 0.02229 -

4 0.01300 - -

5 0.00037 - -
0.6 1 - 0.03296 0.09979
2 0.01099 0.06042 0.043956

3 0.02197 0.01648 -

4 0.00641 - -

5 0.00018 - -

Remark 1. For fixed values of n,l and k it is easy to see that
Pr{W(n,n+1, k)} assumes the maximal value for the edge probability

p=(n+l)/ (;) On the other hand, the number of edges in @, , is a ran-
dom variable with the expectation equal to (3) p; thus to obtain a random
graph @, , having on the average »+1 edges we have to choose the value
of p equal to (n+l)/(;).
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Remark 2. Rényi [8] found the formula for the number of trees
with ¥ pendant vertices, i.e.

n! _ _
(10) g('n,'n—l,k)=—z'—6:_§‘,

where &) is the Stirling number of the second kind. The equivalence of (10)
and (8) for I = —1 follows from the fact that

m—1
(11) m &P =2(—1)'(’f)(m-—s)"
8=0
(see, e.g., [10], ch. 4). As a matter of fact, putting in (8) I = —1, f(n,n —1)
=n""% m = k+¢ and next applying (11) we get (10).
Let v, be a random variable denoting the number of pendant vertices
of a random graph G, ,. It is known (see [4]) that

(12) Mmy = m’!’sn.m’
where u,, is the m-th factorial moment of the distribution. S8o putting
in (9) I = —1 and then setting it to (2) we obtain, according to (12),
the following

COROLLARY 2. If G, ,, ¢8 a tree, then the first and the second moments
of the random variable v, are

1 n—-2
(13) Bio} = n(t-1) 0 - 40,

and
@ B =fo-(1-2 +a(1-2)" e, - 50,

respectively, where Q, = n"p"1gn=Vn-22 5 the probability of appear-
ance of a tree on n vertices.

Remark 3. If a random tree T, of order » means a randomly chosen
tree from the whole collection of n"~* equiprobable trees and w, denotes
the number of pendant vertices of 7,, then according to Rényi’s results
(see [8]) we have E{u,} = 4 and E{ul} = B, where A and B are defined
by (13) and (14), respectively.

The following corollary states that for a large value of # and for
every fixed edge probability p > 0 the random graph @, , contains no
vertex of degree one.

COROLLARY 3. For every fized p > 0

Pr{V(n,0}—>1 as n—> oo,
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Proof. From the inequality of Bonferroni (see, e.g., [2], ch. 4) and (2)
we have
P,—n(n—1)pg" P, _,<Pr{V(n,0)}<P,.

Since, for every fixed p > 0, P, - 1 a8 n — oo (see [b]), we obtain the
assertion.

3. Pendant vertices of arbitrary graphs. Here we derive a formula
for the probability distribution of the number of pendant vertices in
a random graph @, , but no matter whether or not it is connected. Denote
by Pr{U(n, k)} the probability that @, , has exactly k& pendant vertices,
where ¥ = 0,1, ..., n. As usual, for every # and every natural m we set

(@) =2(x—1) ... (®—m+1),

and let [x] denote the greatest integer not greater than x. Applying an
analogous method of proof as in Theorem 1 we will show the followmg

. THEOREM 2. Let n > 1. Then for k = 0, 1,

Pr (U (n, b)) —2(—1)"‘*"( ) o

Mme=k
where
[m/2] n—2i
15) S = n) m'(” m) m—1 i+m(2n—m—3)/2 if osm<n—1
(18) 8, m (m p 1,((m 2@)|) o P q if ’
and
S — {0 if n is odd,
(M) (PETE2)ME if mods even.

Proof. Let R, , be the probability that m (L <m <n—1) fixed

vertices are pendant. Since @, , is not neccessarily connected, ¢ (i = 0,1,

..y [m[2]) pairs of these m vertices can form connected components,
each of size two, which can be done in

(m\[m—2\ (m—2(E-1),., _ m!
(2)( 2 )( 2 )/'!_i!((m—zi)!)-z‘

ways, and other m —2¢ vertices are joined to some vertices chosen from
# —m remaining vertices; the number of all such connections is equal
to (n —m)™ %, Thus

[m/2] m—21 o
m!('n —'m) m—1_{+m(2n—m—3)/2 '
’

= i(m—2q)1)2¢ ¥ 1

i=0

R,
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and the sum 8, ,, of these probabilities over all m-subsets is given by (15).
It is evident that 8§, , = 0 if » is odd since exactly one vertex remains
always isolated. If » is even, then 8, , is the probability that &, , is a forest
in which each of the #»/2 components has size two. So

Sn.u = (”)nlz(pq”—2/2)n,’.'
Put 8, , = 1. According to the principle of inclusion and exclusion
we get our assertion.

Table 3. The numerical values of Pr{U (20, k¥)} for some % and p

The edge probability p

k

0.01 0.06 0.10 0.20 0.30
0 0.148346 0.000133 0.002450 0.272765 0.833700
1 0.000127 0.000725 0.015109 0.336408 0.148620
2 0.346934 0.006661 0.046621 0.224277 0.016148
3 0.005136 0.016079 0.095563 0.107144 0.001412
4 0.311052 0.058325 0.145750 0.041012 0.000111
5 0.006594 0.081873 0.175382 0.013330 0.000008
(] 0.139152 0.169489 0.172633 0.003805 0.0000006
7 0.003117 0.150462 0.141580 0.000974 0.00000004
8 0.033851 0.204657 ~ 0.098550 0.000226 0.000000003
9 0.0006885 0.117510 0.057965 0.000048 0.0000000002

10 0.004576 0.113012 0.029481 0.000009 0.00000000001

The numerical values of Pr{U (20, k)} appear in Table 3. This example
shows us a. rather surprising behaviour of Pr{U(20, k)} with respect to
changes of the edge probability p. For example, if p = 0.01, then

Pr{U(20,2k —1)} < Pr{U(20,2k)}, k=1,2,...,10,
while for p > 0.2
Pr{U(20,k+1)} < Pr{U(20,%k)}, %k=1,2,...,19.
Comparing the probabilities Pr{U (20, k)} with Pr{V (20, k)} one
can see a very small difference between these values when the edge
probability p is greater than or equal to 0.3.
We show now that, for p = p(n) = 1/(n —1), G, , has on the average

approximately n/e pendant vertices and that the variance of v,, i.e. the
number of pendant vertices of @, ,, is asymptotically equal to n (¢ —1)/e?,

OOROLLARY 4. Let p = p(n) = 1/(n—1). Then
lim Efv,} _ 1

ns0 W 6

lim Var{v,} _ e—1 .

nsoo N et
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Proof. Let n > 3. Then from (12) and (16) we obtain

E{v,} = py = n(n—1)pg"~?
and

Var{v,} = Pray + By — l‘fu
= n(n—1)pg"*{(n —2)’pg"~* +¢"7* +1} —n*(n —1)'p ¢,

Now, setting p = 1/(» —1), by a routine calculation we get

E{v,} = n(l __:_:)n-z

Var {v,} = n{(l i n-z_ (1 _ )2”-‘}9

n—1 n-—1

and

whence we obtain the required asymptotic relations.

Let us notice that for fixed values of n the expectation of v, takes
the maximal value for p = 1/(n —1). One can also see that for such a p
a random graph @, , has on the average n/2 edges.

Remark 4. Rényi [8] has shown that the number u, of pendant
vertices of a random tree T, (for the definition of T, see Remark 3) satisfies
Ef{w,} 1 im Var{s,} 6—2

lim =— and 1

Finally, we give the asymptotical property of Pr{U(n, 0)}. We have
COROLLARY 5. For every fized p > 0

Pr{U(n,0)} >1 as& n—> oco.
Proof. From the Bonferroni inequality we obtain
1—n(n—-1)pg"* < Pr{U(n, 0)} <1,

8o if n - oo, we get the assertion.
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