ON PENDANT VERTICES IN RANDOM GRAPHS

BY

ZBIGNIEW PALKA (POZNAŃ)

1. Introduction. Consider a random undirected graph $G_{n,p}$ on n labeled vertices with no loops and multiple edges, in which each of $\binom{n}{2}$ edges occurs with a prescribed probability p = 1 - q ($0) independently of all other edges. The aim of this paper is to give some results about the distribution of the number of pendant vertices in <math>G_{n,p}$. A vertex x is called *pendant* if it is adjacent to exactly one other vertex, i.e. the degree of x is equal to one.

Some authors have considered similar problems for random graphs of other kind (see Meir and Moon [6], Na and Rapoport [7], Rényi [8]). The formula for the probability distribution of the number of isolated vertices in $G_{n,p}$, i.e. vertices of degree equal to zero, is given by Frank [3].

2. Pendant vertices of connected graphs. Let us denote by P_n the probability that a random graph $G_{n,p}$ is connected, i.e. for every pair x, y of distinct vertices of $G_{n,p}$ there exists an (x, y)-path. It is known that P_n may be computed according to the recurrence relation

(1)
$$P_n = 1 - \sum_{s=1}^{n-1} {n-1 \choose s-1} P_s q^{s(n-s)}, \quad n \ge 2 \text{ and } P_1 = 1,$$

obtained by Gilbert [5]. This formula follows from the fact that, for a random graph $G_{n,p}$, one and only one of the n following events for $s=1,2,\ldots,n$ is true: The vertex 1 is connected to s-1 other vertices and no one of these s connected vertices has any edges to other n-s vertices.

Now denote by $\Pr\{V(n, k)\}$ the probability that $G_{n,p}$ is a connected graph with exactly k pendant vertices, k = 0, 1, ..., n. We prove the following result:

THEOREM 1. Let $n \ge 3$. Then for k = 0, 1, ..., n-1

$$\Pr\{V(n, k)\} = \sum_{m=k}^{n-1} (-1)^{m+k} \binom{m}{k} S_{n, m},$$

where

(2)
$$S_{n,m} = {n \choose m} \{(n-m) p q^{(2n-m-3)/2}\}^m P_{n-m},$$

and P_{n-m} is given by (1).

Proof. Let $R_{n,m}$ be the probability that $G_{n,p}$ is a connected graph in which m $(1 \le m \le n-1)$ fixed vertices are pendant, i.e. each of them is an endpoint of exactly one edge. From the condition that the graph $G_{n,p}$ should be connected it follows that the other endpoints of these m edges are chosen from n-m remaining vertices. The number of all such connections is equal to $(n-m)^m$. Since each edge occurs with the same probability p=1-q, independently of all other edges, we have

$$R_{n,m} = (n-m)^m p^m \exp\left\{\left[m(n-m-1) + \binom{m}{2}\right] \log q\right\} P_{n-m}$$

$$= \left\{(n-m)pq^{(2n-m-3)/2}\right\}^m P_{n-m},$$

where P_{n-m} is the probability that a subgraph on n-m vertices is connected, given by (1). The probabilities $R_{n,m}$ are equal for all possible m-subsets of vertices, so the sum $S_{n,m}$ of $R_{n,m}$ over all such subsets is given by (2). Put $S_{n,0} = P_n$. Then, by the application of the principle of inclusion and exclusion (see, e.g., [2], ch. 4), we get the probability of the existence of a connected graph with exactly k $(0 \le k \le n-1)$ pendant vertices.

Let us notice that, for $n \ge 3$, $\Pr\{V(n, n)\} = 0$, since it is impossible that a connected graph of order $n \ge 3$ has all pendant vertices.

We have computed numerical values of $Pr\{V(20, k)\}$ which appear in Table 1. We give these probabilities up to k = 6, since, for successive

.	The edge probability p							
k	0.10	0.15	0.20	0.25	0.30			
0	0.000259	0.025705	0.214445	0.553471	0.815896			
1	0.001487	0.068650	0.256991	0.271272	0.144591			
2	0.004202	0.093481	0.164269	0.075070	0.015487			
3	0.007709	0.085817	0.073997	0.015473	0.001321			
4	0.010212	0.059146	0.026152	0.002240	0.000099			
5	0.010255	0.032230	0.007640	0.000393	0.000007			
6	0.007968	0.014289	0.001892	0.000052	0.0000005			
P_{20}	0.050061	0.386284	0.745872	0.918378	0.977402			

Table 1. The numerical values of $Pr\{V(20, k)\}$ for some k and p

 $k \ge 7$, $\Pr\{V(20, k)\}$ tends rapidly to 0. The last row of Table 1 contains the probability that $G_{20,p}$ is connected, which is the sum of $\Pr\{V(20, k)\}$ over k = 0, 1, ..., 19.

From Theorem 1 we shall obtain the probability $\Pr\{W(n, n+l, k)\}$ that $G_{n,p}$ is a connected (n, n+l) graph with k pendant vertices, where by an (n, m) graph we mean a graph which has n labeled vertices, m edges and no loops or multiple edges. For this purpose we need the number f(n, m) of connected (n, m) graphs. It is trivial that f(n, n+l) = 0 if l < -1. Cayley [1] proved that

$$(3) f(n, n-1) = n^{n-2},$$

and Rényi [9] found the formula for f(n, n), i.e.

(4)
$$f(n, n) = \frac{1}{2} \sum_{s=3}^{n} s! \binom{n}{s} n^{n-s-1}.$$

Recently, Wright [11] derived the recurrence formula for f(n, n+l) for successive l and n, namely

$$2(n+l+1)f(n, n+l+1) = 2\left(\binom{n}{2}-n-l\right)f(n, n+l) + \sum_{s=1}^{n-1}\binom{n}{s}s(n-s)\sum_{h=-1}^{l+1}f(s, s+h)f(n-s, n-s+l-h).$$

Using the exponential generating function of f(n, n+l) Wright found also the exact formulae for f(n, n), f(n, n+1) and f(n, n+2) which depend only on powers of n and on the number

$$h(n) = \sum_{s=1}^{n-1} {n \choose s} s^{s} (n-s)^{n-s},$$

and are of the forms

(5)
$$2f(n, n) = (h(n)/n) - n^{n-2}(n-1),$$

(6)
$$24f(n, n+1) = n^{n-2}(n-1)(5n^2+3n+2)-14h(n)$$

and

$$1152f(n, n+2)$$

$$= (45n^2 + 386n + 312)h(n) - 4n^{n-2}(n-1)(55n^3 + 36n^2 + 18n + 12),$$

respectively. Now we can formulate the following result:

COROLLARY 1. Let $n \geqslant 3$. Then for k = 0, 1, ..., n-1 and l = -1, 0, 1, ..., n(n-3)/2

(7)
$$\Pr\{W(n, n+l, k)\} = g(n, n+l, k) p^{n+l} q^{(n^2-3n-2l)/2},$$

11 - Colloquium Mathematicum XLV.1

where

(8)
$$g(n, n+l, k) = \sum_{m=k}^{n-1} (-1)^{m+k} {n \choose m} {m \choose k} (n-m)^m f(n-m, n-m+l)$$

is the number of (n, n+l) connected graphs with k pendant vertices.

Proof. In Theorem 1 we put

(9)
$$P_{n-m} = f(n-m, n-m+l) p^{n-m+l} \exp \left\{ \left[\binom{n-m}{2} - (n-m+l) \right] \log q \right\}.$$

According to formula (7) and to relations (3), (5) (or (4)) and (6) by the application of a computer calculations, we get the numerical values of $Pr\{W(6, 6+l, k)\}$ which appear in Table 2.

Table 2. T	he numerical	values of	f Pr{W(6,	6+l,k)	for some l, k	and p
------------	--------------	-----------	-----------	--------	---------------	---------

	k	ı				
p		-1	0	1		
 .3	1	_	0.03177	0.04123		
	2	0.02471	0.05825	0.01815		
	3	0.04942	0.01589	_		
	4	0.01441	_	_		
	5	0.00041	_	_		
0.4	1	_	0.04458	0.08999		
	2	0.02229	0.08173	0.03963		
	3	0.04458	0.02229	_		
	4	0.01300	_	_		
	5	0.00037	_	_		
).5	1	_	0.03296	0.09979		
	2	0.01099	0.06042	0.04395		
	3	0.02197	0.01648	_		
	4	0.00641	_	_		
	5	0.00018	_	_		

Remark 1. For fixed values of n, l and k it is easy to see that $\Pr\{W(n, n+l, k)\}$ assumes the maximal value for the edge probability $p = (n+l)/\binom{n}{2}$. On the other hand, the number of edges in $G_{n,p}$ is a random variable with the expectation equal to $\binom{n}{2}p$; thus to obtain a random graph $G_{n,p}$ having on the average n+l edges we have to choose the value of p equal to $\binom{n}{2}$.

Remark 2. Rényi [8] found the formula for the number of trees with k pendant vertices, i.e.

(10)
$$g(n, n-1, k) = \frac{n!}{k!} \mathfrak{S}_{n-2}^{n-k},$$

where \mathfrak{S}_n^m is the Stirling number of the second kind. The equivalence of (10) and (8) for l = -1 follows from the fact that

(11)
$$m! \mathfrak{S}_n^m = \sum_{s=0}^{m-1} (-1)^s \binom{m}{s} (m-s)^n$$

(see, e.g., [10], ch. 4). As a matter of fact, putting in (8) l = -1, $f(n, n-1) = n^{n-2}$, m = k + s and next applying (11) we get (10).

Let v_n be a random variable denoting the number of pendant vertices of a random graph $G_{n,v}$. It is known (see [4]) that

(12)
$$\mu_{[m]} = m! S_{n,m},$$

where $\mu_{[m]}$ is the *m*-th factorial moment of the distribution. So putting in (9) l = -1 and then setting it to (2) we obtain, according to (12), the following

COROLLARY 2. If $G_{n,p}$ is a tree, then the first and the second moments of the random variable v_n are

and

(14)
$$\mathbf{E}\left\{v_n^2\right\} = \left\{n(n-1)\left(1-\frac{2}{n}\right)^{n-2} + n\left(1-\frac{1}{n}\right)^{n-2}\right\}Q_n = BQ_n,$$

respectively, where $Q_n = n^{n-2} p^{n-1} q^{(n-1)(n-2)/2}$ is the probability of appearance of a tree on n vertices.

Remark 3. If a random tree T_n of order n means a randomly chosen tree from the whole collection of n^{n-2} equiprobable trees and u_n denotes the number of pendant vertices of T_n , then according to Rényi's results (see [8]) we have $\mathbb{E}\{u_n\} = A$ and $\mathbb{E}\{u_n^2\} = B$, where A and B are defined by (13) and (14), respectively.

The following corollary states that for a large value of n and for every fixed edge probability p>0 the random graph $G_{n,p}$ contains no vertex of degree one.

COROLLARY 3. For every fixed p > 0

$$\Pr\{V(n,0)\} \to 1$$
 as $n \to \infty$.

Proof. From the inequality of Bonferroni (see, e.g., [2], ch. 4) and (2) we have

$$P_n - n(n-1)pq^{n-2}P_{n-1} \leqslant \Pr\{V(n,0)\} \leqslant P_n.$$

Since, for every fixed p > 0, $P_n \to 1$ as $n \to \infty$ (see [5]), we obtain the assertion.

3. Pendant vertices of arbitrary graphs. Here we derive a formula for the probability distribution of the number of pendant vertices in a random graph $G_{n,p}$ but no matter whether or not it is connected. Denote by $\Pr\{U(n,k)\}$ the probability that $G_{n,p}$ has exactly k pendant vertices, where $k=0,1,\ldots,n$. As usual, for every x and every natural m we set

$$(x)_m = x(x-1) \dots (x-m+1)$$

and let [x] denote the greatest integer not greater than x. Applying an analogous method of proof as in Theorem 1 we will show the following

THEOREM 2. Let $n \ge 1$. Then for k = 0, 1, ..., n

$$\Pr\{U(n,k)\} = \sum_{m=k}^{n} (-1)^{m+k} {m \choose k} S_{n,m},$$

where

$$(15) S_{n,m} = \binom{n}{m} \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{m! (n-m)^{m-2i}}{i! ((m-2i)!) \cdot 2^i} p^{m-i} q^{i+m(2n-m-3)/2} \quad \text{if } 0 \leq m \leq n-1,$$

and

$$S_{n,n} = \begin{cases} 0 & \text{if } n \text{ is odd,} \\ (n)_{n/2} (pq^{n-2}/2)^{n/2} & \text{if } n \text{ is even.} \end{cases}$$

Proof. Let $R_{n,m}$ be the probability that $m \ (1 \le m \le n-1)$ fixed vertices are pendant. Since $G_{n,p}$ is not necessarily connected, $i \ (i = 0, 1, ..., [m/2])$ pairs of these m vertices can form connected components, each of size two, which can be done in

$$\binom{m}{2}\binom{m-2}{2}\cdots\binom{m-2\ (i-1)}{2}/i!=rac{m!}{i!((m-2i)!)\cdot 2^i}$$

ways, and other m-2i vertices are joined to some vertices chosen from n-m remaining vertices; the number of all such connections is equal to $(n-m)^{m-2i}$. Thus

$$R_{n,m} = \sum_{i=0}^{\lfloor m/2 \rfloor} \frac{m! (n-m)^{m-2i}}{i! ((m-2i)!) \cdot 2^i} p^{m-i} q^{i+m (2n-m-3)/2},$$

and the sum $S_{n,m}$ of these probabilities over all *m*-subsets is given by (15). It is evident that $S_{n,n} = 0$ if *n* is odd since exactly one vertex remains always isolated. If *n* is even, then $S_{n,n}$ is the probability that $G_{n,p}$ is a forest in which each of the n/2 components has size two. So

$$S_{n,n} = (n)_{n/2} (pq^{n-2}/2)^{n/2}$$
.

Put $S_{n,0} = 1$. According to the principle of inclusion and exclusion we get our assertion.

k	The edge probability p						
	0.01	0.05	0.10	0.20	0.30		
0	0.148346	0.000133	0.002450	0.272765	0.833700		
1	0.000127	0.000725	0.015109	0.336408	0.148620		
2	0.346934	0.006661	0.046621	0.224277	0.016148		
3	0.005136	0.016079	0.095563	0.107144	0.001412		
4	0.311052	0.058325	0.145750	0.041012	0.000111		
5	0.006594	0.081873	0.175382	0.013330	0.000008		
6	0.139152	0.169489	0.172633	0.003805	0.0000006		
7	0.003117	0.150462	0.141580	0.000974	0.00000004		
8	0.033851	0.204657	0.098550	0.000226	0.000000003		
9	0.000685	0.117510	0.057965	0.000048	0.0000000002		
10	0.004576	0.113012	0.029481	0.000009	0.000000000		

Table 3. The numerical values of $Pr\{U(20, k)\}\$ for some k and p

The numerical values of $Pr\{U(20, k)\}$ appear in Table 3. This example shows us a rather surprising behaviour of $Pr\{U(20, k)\}$ with respect to changes of the edge probability p. For example, if p = 0.01, then

 $\Pr\{U(20,\,2k-1)\} < \Pr\{U(20,\,2k)\}, \qquad k = 1,\,2,\,\dots,\,10,$ while for $p \geqslant 0.2$

$$\Pr\{U(20, k+1)\} < \Pr\{U(20, k)\}, \quad k = 1, 2, ..., 19.$$

Comparing the probabilities $\Pr\{U(20,k)\}$ with $\Pr\{V(20,k)\}$ one can see a very small difference between these values when the edge probability p is greater than or equal to 0.3.

We show now that, for p = p(n) = 1/(n-1), $G_{n,p}$ has on the average approximately n/e pendant vertices and that the variance of v_n , i.e. the number of pendant vertices of $G_{n,p}$, is asymptotically equal to $n(e-1)/e^2$.

COROLLARY 4. Let
$$p = p(n) = 1/(n-1)$$
. Then

$$\lim_{n\to\infty}\frac{\mathbf{E}\left\{v_n\right\}}{n}=\frac{1}{e}$$

and

$$\lim_{n\to\infty}\frac{\operatorname{Var}\{v_n\}}{n}=\frac{e-1}{e^2}.$$

Proof. Let $n \ge 3$. Then from (12) and (15) we obtain

$$\mathbb{E}\{v_n\} = \mu_{[1]} = n(n-1)pq^{n-2}$$

and

$$\begin{aligned} \operatorname{Var}\{v_n\} &= \mu_{[2]} + \mu_{[1]} - \mu_{[1]}^2 \\ &= n(n-1)pq^{n-2}\{(n-2)^2pq^{n-3} + q^{n-2} + 1\} - n^2(n-1)^2p^2q^{2n-4}. \end{aligned}$$

Now, setting p = 1/(n-1), by a routine calculation we get

$$\mathbf{E}\left\{v_n\right\} = n\left(1 - \frac{1}{n}\right)^{n-2}$$

and

$$\operatorname{Var}\{v_n\} = n\left\{\left(1 - \frac{1}{n-1}\right)^{n-2} - \left(1 - \frac{1}{n-1}\right)^{2n-4}\right\},$$

whence we obtain the required asymptotic relations.

Let us notice that for fixed values of n the expectation of v_n takes the maximal value for p = 1/(n-1). One can also see that for such a p a random graph $G_{n,p}$ has on the average n/2 edges.

Remark 4. Rényi [8] has shown that the number u_n of pendant vertices of a random tree T_n (for the definition of T_n see Remark 3) satisfies

$$\lim_{n\to\infty}\frac{\mathbf{E}\{u_n\}}{n}=\frac{1}{e}\quad\text{and}\quad\lim_{n\to\infty}\frac{\operatorname{Var}\{u_n\}}{n}=\frac{e-2}{e^2}.$$

Finally, we give the asymptotical property of $Pr\{U(n,0)\}$. We have COROLLARY 5. For every fixed p>0

$$\Pr\{U(n,0)\} \to 1$$
 as $n \to \infty$.

Proof. From the Bonferroni inequality we obtain

$$1-n(n-1)pq^{n-2} \leqslant \Pr\{U(n,0)\} \leqslant 1,$$

so if $n \to \infty$, we get the assertion.

REFERENCES

- [1] A. Cayley, A theorem on trees, The Quarterly Journal of Mathematics 23 (1969), p. 376-378.
- [2] W. Feller, An introduction to probability theory and its applications, Vol. 1, 2nd edition, New York 1961.
- [3] O. Frank, Statistical inference in graphs, Swedish Research Institute of National Defence, Stockholm 1971.
- [4] M. Fréchet, Les probabilités associées à un système d'événements compatibles et dépendants, Actualités scientifiques et industrielles, Paris 1940-1943.

- [5] E. N. Gilbert, Random graphs, Annals of Mathematical Statistics 30 (1959), p. 1141-1144.
- [6] A. Meir and J. W. Moon, On nodes of degree two in random trees, Mathematika 15 (1968), p. 188-192.
- [7] N. S. Na and A. Rapoport, Distribution of nodes of a tree by degree, Mathematical Biosciences 6 (1970), p. 313-329.
- [8] A. Rényi, Some remarks on the theory of trees, Publications of the Mathematical Institute of the Hungarian Academy of Sciences 4 (1959), p. 73-85.
- [9] On connected graphs I, ibidem 4 (1959), p. 385-388.
- [10] I. Tomescu, Introducere in combinatorica, Bucharest 1972. English edition: Introduction to combinatorics, Collet's (Publishers) Ltd., 1975.
- [11] E. M. Wright, The number of connected sparsely-edged graphs, Journal of Graph Theory 1 (1977), p. 317-330.

INSTITUTE OF MATHEMATICS A. MICKIEWICZ UNIVERSITY POZNAŃ

Regu par la Rédaction le 22.9.1978