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Note on the convergence of iterates

by B. CHoczewskl (Krakéw)

1. This note is strictly connected with note [3] by M. Kuczma in
which the following problem has been considered: Let f(x) be a function
of a real or a complex variable defined in a neighbourhood U = {x:
|l#—a| < 7} of a point a such that f(a) = a. For a given z,¢U we define
the sequence of iterates z, by the relation

Tnr =f(®,), n=0,1,...,
and we consider the sequence

_ Imn+l - n|

= ,y m=1,2,...
lwn—wn—ll

n
(putting v, = 0 whenever z, = 2,_,). Let us fix an z,eU, z, + a.
THEOREM. If the function f(x) fulfils the inequality

(1) f@—al< lo—al for zeUN{a},

and has at the point a the derivative 8 = f'(a) # 1, then there exists a limit
of the sequence y, and limy, = |s| ().

This theorem is due to Hamilton [1] who stated it also for the value
s = 1. But in this case the theorem becomes false, viz. Knezma [3] showed
that limy, need not exist; however, if it exists then limy, = 1.

The aim of the present note is to give a sufficient condition for the
existence of limy, (Theorem 1) and to derive an asymptotic relation for
the sequence y, (Theorem 2).

2. Let k be an integer, k> 1. We now formulate

THEOREM 1. Let p(x) be a function defined in U and fulfilling the
condilions:

(2) 0<|l+(z—a)p) <l for zeUN\{a}
and
(3) there exists g = lim |p(z)| and g > 0.

(1) If not otherwise stated, the symbols lim and limsup will refer to n — + oo.
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If the funclion f(x) is given by the formula
(4) fl@) = o+ (z—a)'p(@) for z<U,

then for every x,e U\{a} there exists a limit of the sequence y, and limy, = 1.

Proof. By (2) and (4) inequality (1) holds for the function f(z).
Thus, given an z,« U\ {a}, we can actually form the sequence of iterates z,, .
Moreover, ‘lim|z,—a| = 0 (cf. [3], §3), i.e. lima, = a. By (4) and (2)
z, #aforn = 0,1, ... By (3) there is an integer n, such that for n > n,
we have p(x,) # 0. We write y, explicitely for » > n,, making use of (4):

(@, — a)"p ()] |p ()]
= =14 (@, — ) 'p(z, ) ff ——.
@0 1— @ P (@) S YN ]

Hence, an account of the preceding discussion and (3), the theorem

follows immediately.

n

3. Let © be a real variable. We shall write u, ~ v, iff v, # 0 and
limu,/v, = 1. We shall also use the notion of the class 8%(U) of functions,
which is due to Kuczma ([2], p. 20) and may be formulated as follows:

feSo(TU) iff f is continuous in U and satisfies (1) together with the
inequality (f(z)— a)(z—a)> 0 for z<U\{a}.

THEOREM 2. For every sequence {u,},n = 0,1, ..., of positive num-
bers such that the sequence

n
P = H U;

i=0
satisfies the condition
(5) 0 < limsupp, < o

and for every integer k > 1 there exists a function p(x) such that the function

(6) f(@) = a—"p(2)
kas the following properties:

1° feS3(<—1, 1)),

2° the sequence y, generated by the function f(x) for x, = 1 is asympto-
tically equal to u,:y, ~ u,.

Proof. Fix an integer ¥ > 1. Relation (5) implies the boundedness
of the product p,: 0 < p, < M for every »>0. We can restrict our

attention to the case M = 1. For otherwise, if we had M > 1, then we
could take into consideration the sequence v, = w,M 2", n > 0. Then

the sequence ¢, = [] v; fulfils (5) since g, = p, M °», where s, =2—27";
i=0

hence limsup ¢, = M 2limsupp, . Moreover, 0 < ¢, < p, M ™' < 1forn >0,
and v, ~u,.
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Thus, ‘let the inequality
(7) 0<p, <1
be fulfilled for every = > 0. We put
(8) =1, @, =z,—akp, fornm=0,1,...
and we are going to prove that the inequalities
(9) 0< @y, <2, <1

are valid for every n > 0. Indeed, #, =1—p,, i.e. 0 < z; < 2, = 1, and
if (9) holds for an n = 0, then #,,, > @,,,— 2%, , > 0 on account of (7)
and the induction hypothesis. The inequality =,,,< #,,, i3 obvious.
Thus (9) is true for » = 0, 1, ... and the sequence z,, converges, limz, = a.
It follows that a = 0. In fact, consider this subsequence of the sequence
Dny 88y P, , Which converges to limsupp,. By (5) we have lim p, = p>0.

y—> 400
Passing to the limit in equality (8) written for n = n, we get a = a— a*p,
which yields a = 0. Thus lim#, = 0, and (cf. (8))

(10) limz,,,/z, = 1.

Now let us take an arbitrary function p(x) which is defined in the
interval {0, 1), continuous in (0, 1) and fulfils the conditions

(11) 0<p(r)<1l in (0,1), p(=x,)=p, forn=0,1,...

We extend this function onto the whole interval {—1,1)> putting
for £e(—1,0): p(z) = —p(—=) if & is even, and p(x) = p(—=x) if k
is odd.

Finally we define the function f(x) for #¢(—1,1) by formula (6)
(with p(x) defined above). The function f(z) is continuous in (—1,1),
and inequality (11) implies 0 < f(z) < @ in (0,1)>. We can easily verify
that this function satisfies the relation f(x) = —f(—x), whence x < f(x)
< 0 for xe{(—1,0). These remarks imply assertion 1°.

Sequence (8) is then the sequence of iterates of the function f(z),
starting from the point x, = 1. We calculate the corresponding sequence
¥, and, making use of formula (11), we get

Yo = Zp(wn)l[mk—lp(wn—l)] = un(w'nlwn—l)k'
From. this and (10) we obtain the relation y, ~ w,, i.e. agsertion 2°

is true. This completes the proof of the theorem.

Remark. Theorem 2 allows us to find other examples of a diver-
gent sequence y, in the case s = 1. For instance if «, = [(n+ 2)/2]"n,
where [x] denotes the integral part of «, and ¢, = (—1)"*, n = 0,1, ...,
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then p,, = (m+1)"'; Pamiy =1 for m = 0,1, ..., i.e. the assumptions
of Theorem 2 are fulfilled, consequently the corresponding sequence y,
oscillates between zero and infinity.
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