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1. Introduction. Two compacta X, Y lying in the Hilbert cube @
are said to be fundamentally equivalent ([1], p. 233) if there exist two
sequences {f.}, {gx} of (continuous) maps of ¢ into itself such that for
every neighborhood U of X and for every neighborhood V of Y there
are neighborhoods U, of X and V, of Y such that for almost all £ the
homotopies

(1.1) FelUo = fi1a/Usy in V,
(1.2) 9%/Vo =~ gr11/Voe in U,
(1.3) 9:Ji/ Uo =~ 1/ U, in U,
(1.4) JegxlVo =1/V, in V¥V

hold true. If we omit the last condition (1.4), then instead of the funda-
mental equivalence of X and Y we get a weaker relation of the fundamental
domination of X by Y ([1], p. 233).

If X,Y are ANR-sets, then the relation of the fundamental equi-
valence is the same ([1], p. 234) as the relation of the homotopy equi-
valence (in the sense of Hurewicz [4], p. 125), and the relation of the
fundamental domination is the same as the relation of the homotopy
domination (in the sense of Whitehead [5], p. 1133).

By the shape Sh(X) of a compactum X we understand (cf. [2], p. 221)
the class of all compacta Y such that X and Y are homeomorphic to
two fundamentally equivalent compacta lying in @. The relation Sh(X)
< Sh(Y) means that X and Y are homeomorphic with two compacta’
X', Y’ lying in @ and such that X' is fundamentally dominated by Y'.

The aim of this note is to study how the shape of the suspension
D(X) of a compactum X depends on the shape of X.

2. Preliminary constructions. It is convenient for our purposes to
regard @ as the subset of the Hilbert space H consisting of all points
x = (0, @y, &3, ...) With 0 <z, <1/(k—1) for ¥ = 2,3, ... Consider the
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points ¢ = (1,0,0,...) and b =(—1,0,0, ) of H and let R denote
the union of all segments (in H) of the form ar and bw, with ze@). One
easily sees that R is a convex subset of H homeomorphic with .
Assign to every positive number ¢ < 3 and to every t¢<0,1)> the
map a;: B — R given by the following formulas:
If o(2, a) < ¢ then
a(z) =ta+(1—1)2.
If o(2,0) <e¢ then
a;(2) =t-b+(1—1t)-2.
If ¢< o(2, a) < 2¢ then

ai(z) =2+ [2— e(zs’ a)]-t-(a—‘z).

If e< o(2yb) < 2¢ then

o(z, b)

&

a;(2) =z+[2— ]-t-(b—z).

If o(2,a) > 2¢ and o(2, b) > 2¢, then
a;(2) = z.

It is easy to see that a; is continuous and it depends continuously
on t. Moreover, a, is the identity map.

Now let us ass1gn to every set Z = @ the set Z being the union of
all segments az and bz with zeZ. It is clear that Z is a subset of R homeo-
morphic with the suspension X'(Z).

Let ¢ be a positive number < . Denote by Z( the union of the set
Z and of two balls in the space R with centers ¢ and b and with radius e.
Observe, that if W is a neighborhood (in @) of the set Z, then the set W
is a neighborhood (in R) of the set Z. One easily sees that if ¢ runs through
the interval <0, 1), then the restriction «f/Z'? is a continuous deformation
of the set Z( in itself, joining the identity map ¢/Z® with the map af/Z®
having values in the set Z.

If A and B are subsets of @, then to every map f: A — B we can
assign a map f : A ﬁ, called the suspension of the map f, given by the
formulas:

If 2 belongs to a segment ax with xeA, then

e(a, 2) O(G,Z)] a
e(a, ) e(a, z)

7o) = fla >+[
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If 2z belongs to a segment ba with xeA, then

;o) e,9]
I = (b, x) f(a;)—i—[l Q(byw)] b

In particular, if f: @ — @, then f: R — R. Let us observe that if
f,9: Q —Q, then the suspension % of the composition b =fg: @ — Q.
is the same as the composition f§ of the suspensions of f and of g.

Moreover, if ¢: A X <0, 1> - B is a homotopy, then for every te<0,1)-
the function f;: A — B given by the formula f;(x) = ¢(x,?) is a map
depending continuously on ¢. Setting

¢ (2,1) =f,(2) for every (z,t)ed x<0,1),

we get a homotopy ¢: AA><<0, 1> —> B called the suspension of the ho-
motopy ¢.

3. Shape of the suspension. Now let us consider two compacta
X, Y < Q with Sh(X) = Sh(Y) and let us prove that Sh(X) = Sh(Y).

Since Sh(X) = Sh(Y), there exist two sequences {f.}, {g;} of maps
of @ into itself such that for every neighborhood (in @) U of X and for
every neighborhood (in @) V of Y there is a neighborhood (in @) U, of X
and a neighborhood (in ) V, of Y such that the relations (1.1)-(1.4)
hold for almost all k.

Let N be a neighborhood (in R) of the set Y. Then we may select
a neighborhood (in Q) V of Y and a positive number &, < } so that
Ve) = N, Let U, be a neighborhood of X (in @) and %k, an index such
that for every %k >k, relation (1.1) holds true. It means that there is
a homotopy ¢,: U,Xx<0,1> - V such that ¢, (2,0) = f, () and ¢,(x, 1)
= fi+1(#) for every point xeU,. Using the homotopy a3, the suspension
fk of the map f, and the suspension ¢, of the homotopy ¢,, let us define
a homotopy ¢i1: U x<0,1) - Vi < N by the formulas:

fka;; (2) for (z, t)e U x (0, %),
P (z,1) = q;)k[ail (2), 3t—1] for (2, 1)e Ut()el) X <%’ §>7
Srrr103 34(2) for (z,1)e Uc()el) X <§’ 1>.

It is clear that this homotopy joins the restriction f,/U¢Y with the
restriction f,.,/U{Y. Hence

(3.1) £, /U ~f,.,|]U  in N for every k > k,.
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By an analogous argument, we infer by (1.2) that for every neigh-

borhood M of X (in R) there is a neighborhood V, of Y (in @), a positive
number ¢, < 3 and an index k, such that

(3.2) G|V =~ g, |V in M for every k> k,.

Moreover, there exists a neighborhood U of X (in ) and a positive
number ¢; < } such that U® c M. Since U, may be replaced by any
smaller neighborhood of X (in @), we infer by (1.3) that U, can be se-
lected so that there is an index k; with the property that relation (1.3)
holds true for every k> k,. It means that there is a homotopy
wi: Ugx<0,1> - U such that wy,(2,0) =g¢,fi(r) and y,(z,1) ==
for every point xe U,. Using the operation of the suspension for the map
hi, = gifr: @ — @ and for the homotopy w,, let us define a homotopy
pi3: U x0,1> - U « M by the following formulas:

i;'k a33(?) for (z,1)eUFY <0, 3,
vi2(2,0) = { yela?(2),3t—1] for (2,1%)e U x4, %,
a3 3 (2) for (2,1)e UFY X <3, 1).

~ One easily sees that this homotopy joins in M the restriction
b | U = g.1,/USF? with the map i/U{?. Hence

(3.3) G.f /U ~ /U in M for every k> k,.

Thus we have shown that the fundamental domination of X by Y

implies the fundamental domination of b¢ by Y.

If relation (1.4) holds true, then by an analogous argument, we infer
that for every neighborhood N of Y (in R) there is a neighborhood V,
of Y (in @), a positive number ¢, < 4 and an index k, such that

(3.4) i) VE® ~i/Vis  in N for every k> k,.

It follows that the fundamental equlva,lence of X and Y implies the

fundamental equivalence of X and Y.
The obtained results can be formulated as the following

(3.5) THEOREM. The shape of the suspension Y (X) of a compactum
X depends only on the shape of X. Moreover, if Sh(X) << Sh(Y), then
Sh(3(X)) < Sh(J (X))

Thus the operation of the suspension may be regarded as an operation
on the shapes. In fact, we can define the suspension )’ (Sh(X)) of the shape
Sh(X) as the shape of the suspension }'(X) of X.

Remark. Let us observe that the shape of the suspension Y (X
does not determine the shape of X, even for polyhedra. In fact, consider
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a triangulation 7 of a Poincaré’s 3-sphere, that is of a closed manifold
M for which all homology groups are isomorphic with the corresponding
groups of the Euclidean 3-sphere, but the fundamental group is not
trivial. If one removes from M the interior of a 3-dimensional simplex
belonging to 7', then one gets an acyclic polyhedron X with non-trivial
shape, because its fundamental group is not trivial. However, one easily
sees that the suspension X(X) is an AR-set, hence its shape is
trivial.

4. Suspension of movable compacta. The property of movability
([3], p. 137) belongs to important shape-invariants. A compactum Y is
said to be movable, if there exists in ¢ a set X homeomorphic with Y
satisfying the following condition:

(4.1) For every meighborhood U of X (in Q) there is a meighborhood
U, of X (in Q) which by a continuous deformation in U can be carried onto
a subset of every meighborhood of X (in Q).

Let us prove the following

(4.2) THEOREM. If X ¢8 a movable compactum, then the suspension
2(X) of X 18 also movable.

Proof. We can assume that X < ¢. Keeping the notations of sections 2

and 3, consider a neighborhood W of the set X in the space R. It is clear
that there exists a neighborhood U of X (in @) and a positive number
¢ < } such that U® = W. Since X is movable, there exists a neighborhood
U, of X (in Q) satisfying (4.1). Then the set UP <« U9 < W is a neigh-

borhood of X (in R). In order to prove that X is movable, it suffices to
show that U{® can be carried by a continuous deformation in W onto

a subset of an arbitrarily given neighborhood W, of the set X (in R).

Congsider a neighborhood V of X (in @) such that Ve W,. It follows by
(4.1) that there is a homotopy ¢: U,%x<0,1)> — U such that ¢(x,0) ==
and ¢(x,1)eV for every point xeU,.

Setting

(2, 1) !aéc(z) for every (z,¢)eU{ x <0, 1>,
2 =1 .
’ ¢ [ai(2), 2t—1]  for every (z,t)eUY x (3,15,

one gets a homotopy v: UPx<0,1> - UY < W joining the map
at| U = /U with the map, the values of which w(z,1) = ¢[ai(z), 1]

belong to the set Ve W,o. Thus X = D'(X) is movable and the proof of
theorem (4.2) is finished.

(4.3) Problem. Does there exist a mnon-movable compactum X such
that its suspension is movable? (P 690)
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