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Asymptotic properties of solutions
of some integral equations
and second order differential equations

by Z. PoLNIAKOWSKI (Poznan)

The purpose of this paper is to investigate asymptotic properties
(as ¢ —>oo) of solutions of some Volterra integral equations (section 1)
and some second order differential equations (section 2). The second
order differential equation which appears in 2.1 is obtained by a suitable
transformation of the integral equation of the following type:

&

“(t

@ v=1@+ [{LBew-vwlyna (o< coora=co).
a

In section 2 (Theorem 3) we give sufficient conditions for the exis-

tence of a bounded (resp. convergent) solution of the differential equation

(%) a(2)Y" + ay(®)y’ + ag(@)y = b(®)  (# =) .
We also prove an analogous Theorem 5 about the asymptotic behaviour

&1
of the function y(z)exp [ ay(t)d?, where y(x) is a solution of the diffe-
o

rential equation (x*) for a,(x) = 1.

The theorems of section 2 follow from a theorem concerning the
asymptotic properties of the solutions of the integral equation (*) (Theo-
rem 2). Theorem 1 is a generalization of Theorem 2.

In the proofs we make use of 1'Hopital’s rule for complex-valued
functions of the real variable. We shall use that rule in the form given
by Theorem C of [1], p. 20. We also give the criterion (1.2) which is
a sufficient condition for the function in the denominator (in the formu-
lation of I'Hopital’s rule) to have the property H (see below), which
makes possible the application of this rule.

We consider in this paper complex-valued functions of one and two
real variables. Integration is understood in the sense of Riemann.
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170 Z. Polniakowski

1. We shall say that the function g(x) has the property H with the
constant K (>1) at the point © = £ (|£] < oo) if it is defined and differ-
entiable in some neighbourhood I of £, except the point & at most, and
if there exists a constant K such that for each pair of points x,2,¢e I
we have

a) lim lg(2) = co and |/ lg'0)jdt| < Kig(@)| (@< o < or E<z<a),
T o

¢
b) limg(a) = 0 and | [1g'()idt] < Klg(@)| (@ #¢).

If ,7,< &, we shall say that the function g(x) has the left-side pro-
perty H; if @, x, > £, we shall say that it has the right-side property H.

1.1. It is easy to prove that if |g(x)| has the property H with the
g9'(2)

g ()|’
the function g(x) has the property H at & with the constant K, = KM,

constant K at &, and if

< M in the neighbourhood of £, then

1.2. Suppose that for some X < & the following conditions are salis-
fied in the imterval (X, &):

1) h(x) is continuous and h(x) # 0,

2) there exists a constant N such that we have |h(x)| < N|reh(z)|,

¢
3) JIh(@)ldw = oo (5o (X, £)),
T
4) the function g(x) has a continuous derivative and g(x) # 0,

7@ _
5) Sy~ @) @t 8).

Then for every real p # 0 and every K > N the function g*(x) (}) has
at the point & the left-side property H (with the constant K). Furthermore
the Junction |g(x)| 48 monotone in {(x,, &) for some x, e (X, &).

It suffices to prove 1.2 for p = 1. Let us observe that from the
equality

’ ’ ’

g g g

re? =rehreﬁ—1mh1mg—h (X<z<¥),
it follows, in virtue of 2) and of the equality lim im ;}gﬁ — 0, that
¢
g (=)]’ g'(x)
=rTe ~reh(x xtE).
g@] " ga) ~ TR @1 )

Next, from 1) and 2) it follows that we always have reh(z)> 0 or
reh(z) <0 in (X, &).

(1) In the definition of the property H only the functions |g(x)|?, |g(@)]”~* and
|9'(z)| occur in this case.
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a) In the case of reh(x) > 0 we deduce from the last relation that
for some x, e (X, &) in the interval <, &) the following inequalities hold:

lg(@)|" = g (w)|reh(z) >0,

(o)l
J 19

In|g(2)| — In|g(z,)| = dt;%re] h(t)d: .

In virtue of 2) and 3) we get lim|g(x)] = co. Now the proof, for
zté

this case, follows from the relation

@) _ [b@)
lg@@)” ~ reh(a)

(1 §),
because |g(x)| is monotonic and because 2) and 1.1 are satisfied.
b) In the case of reh(x) < 0 we infer as in case a) that for some

x, € (X, &) in the interval {(w,, &) the inequalities |g(z)|’ < }|g(x)|reh(z) < O
and the equality lilglg(a;) = 0 are satisfied. In addition we have |g'(z)]
zté

< 2|g(2)h(z)| for z € (@, §). We obtain from this for x e (w,, §):
9(@)| < lg(@)le=», where w(@)=—}re [h(t)dtteo (a1§).
s

For every pair @;, @, (2, <2, < 7, < &) we have

[ lg@lds <2 [ |g(@)h(@)ds < —2N|g(z,)] [ e-“@reh(v)do

T3 T3 T3
u(xy)
— 4N|g(x,)| [ eta.
w(T3)

§
This implies the convergence of the integral [ |¢’(x)|d». Now, we com-
Ty

plete the proof as in case a).
Remark. If the conditions of 1.2 are satisfied in the interval
(¢, X> with X > &, we apply 1.2 replacing # by —=z.
1.3. Suppose that
1) the functions f(x) and K(xz,1) are defined for x > a, t > q,
2) lim [f(z)] = M < oo,
T=r00

o o
3) im [ |K(x,1)|d = p <1 and lim [ |K (3, t)|dt = O for each t,> a,

12%



172 Z. Polniakowski

4) the integral equation

y@) =f@) + [ K@, )yt)dt (s> a)

has a solution ¥(x) such that |§(w)] <L for x > a.
Then the following inequality holds:

Tim |7 (z)] < ——.
i 7(a)] < 72

For given ¢ ¢(0,1—u) we choose x, > a and then z, > z,, so that
xy o0
J BE@niat<s, [ K@ nd<pte,
a Zo
o)) < M+e and [F@)<Li+e (x>a),
where L, = lim |7(x)|. We obtain
T )
F(@) < M+e+L [ 1K@, ) di+(Ly+e) [ Ko, )t

S M+tetel+(Ly+¢)(u+te),

I < M+e(1+L+p+e) )
l—u—e

THEOREM 1. Let f(t), F(t) and y() be defined for t = x, and let N (x, t)
be defined for t > @ > x,. Suppose that for t =z = =z,

t t ¢ t
1) there exist integrals [f(s)ds, fﬂp(s)ds, [ N(z,s)ds, fN(s,t)ds and

1
[ 17 (@, 9)||N (s, t)|%ds < AN (2, 1)|°

with some a e (0,1) and fived 1 <1,
2) we have |N(z,t)| <F(t) and F(t) is almost wuniformly bounded,

3) [ lp(t)|dt < oo, (t) is almost uniformly bounded,
T
furthermore
4) lim sup [ F'"(t)|N (&, t)’dt =0,
200 To<é<T T

Ba) Iim |f(#)] = M < oo, or

bb) lim f(x) = 8 (|8] < o0).
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Then the integral equation
8) y@) =t@)+ [ Ko, )y(0at,
T

where Ko(@,t) = N(z, 1) +y(t) for t = & > @,, has for large z (>=z,) exactly
one solution ¥ (xz) bounded for x->oo. We have lim |7(x)| = M in case 5a),
00

resp. lim y(z) = s in case 5b). If f(z) is continuous and N (x,t) is an

almost uniformly continuous function of the variable x for t > x > x,, then
y(x) 18 continuous for large z.

Proof. We choose a number a satisfying the condition 1 < a < 1.

Then with some @, > x, there exists an integral f F'"%s)|N (z, s)|"ds for

t>x >, and we have flKo(m 1)]dt <a for z > x,.

Let Kn(xz,t) = fKo (@, $)Kpn-s(s,t)ds for t > o> 2, and n =1, 2,
We shall prove by 1nduct10n the inequality
(2) K, )] <a"F " (0)|N (@, )] +na" (@, 1) +a"[p(1)]
t
for t> x>z, and n=10,1,2,..., where w(x,t)=F (1) [ |N(s,1)|*[y(s)| ds.

We immediately verify that (2) is true for n = 0. Suppose now that
it is true for the index n—1 (» >1). Then, observing that y,(z,?) is
a decreasing function of the wvariable  for ¢ >z > 2,, we have

| En(, 1)
¢
< [ IN@, 8)+ () @ F T WIN (s, 0 + (n—1)a" ps, ) +a" () ds
i
< a"F (0| (2, 1)) 40" F ) [ 1N (s, O lp(o)]ds +

3
+{(n—1)a"py(a, 1) +a"p@} [ 1N (@, 8)+p(s)|ds.
Hence follows (2).

Therefore the series D Kn(z,t) is almost uniformly convergent for
n=0

t> x>z . Taking ) Ka(v,t) = R(z,t) we obtain from (2) for t>z>ux,
n=0

IR(z, )] <72 F""(0)|¥ (=, )" + A 1 S 0+ g o)
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We have

o0 oo ¢
Iim [y, ydt =Tm [ F7) [ 1N (s, t)p(s)| dsdt
=Im [ v [ BN G, ordds

< lim f F'"°(t)| N (z, t)|°d¢- lim f hp(s)|ds = 0.

T—>00 o
We choose z, > @, so that the functions f F'%(1)|N (z, t)|°dt, f pi(z, t)dt

and f(x) are bounded for # > x, and we find that the integral f |B(x, t)|dt
is convergent and uniformly bounded for z > x,. Then t;he functions

J () = foR(w, 1) f(t)dt and ¥ (x) = f(x) +J (2) remain bounded for 2 > z,.

We shall prove the uniform convergence of the integral | R(t,, 8)/(s)ds
Ny
for 1, <ty <y, 1, > 2,. We have for t> x,

oo

| 1R, )1 11ds < W2 [ PN (o, s+
¢ [

1 [ g [ . @
= [7 (s)‘f ¥ (u, 9) Iw(u)lduds+1_%‘f w(s)lds,

where N = sup If (z)|.

T>Ty
For given & > 0 we choose z, > 1, so that for ¢ > x, we get

sup f F*~°(3)| N (u, 8)[°ds and [ lp(u)|du<s
h<u<l! t

We have for t > a,, f, <1, <ty
[-] 8 oo 1 o 8
f FI‘“(s)tf N (u, ) "lp(w)|duds = [ [+ [ [
t o t g [ 2
t ="}
~ [lp@)| [ F*(s)|N¥ (u, 8)"dsdu +
to t

+ [ W)l [ P8\ N (u, 8)"dsdu < ed + &,
t [

where A = [ |p(u)|du.
5
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Finally, for t > z;, ¢, <ty <7, we obtain:

[e 2]

| 1R, 91 o118 <12

¢

N eAN eeN eN

(l—a)2 (1—a)’+1—a'

It follows that J(z) is integrable in every finite interval (a, b} (7, < a
<b < o). Since the integral [ |Eyz,?)| [ |R(t, 8)|dsdt converges for
z ¢

x > x,, we have for x > x,:

[ Ko(w,t)J(t)dt=fKo(w,t)f R(t,s)f(s)dsat

= [ 1 s)fKo(w HR(t, s)dids = ff(s)ZKn+1(w 8)ds

n=0

and
f K@, )7 (1)di — f Koo, ) {f(t) +J (1) dt = I (a).

Hence it follows that %(zx) satisfies (1) for z > =z,. Next, by (2), the

equality lim f |K(x,t)|dt =0 holds for #>x,. Since every solution
n— 0 X

y(z) of (1) for f(x) = 0 satisfies the relation y(z) = f Ky(z, t)y(t)dt, we

find that the unique solution of (1) for = > =,, bounded for & >o0, is in
this case the function y(z) = 0. We infer hence that in the general case
there exists for # > z, exactly one solution of (1) bounded for z-—ooc.

We have 7(z)—f(x) = [ Ky, )7(t)di >0 with z—>oc0 by 4). It fol-
lows that Iim |§(x)] = M in case 5a), and lim () = s in case 5b).
T

T—00
If f(z) is continuous and N (#,t) is an almost uniformly continuous

function of the variable x for ¢t > = > x,, then it is easy to prove by 4)
that the functions [ K,(#, t)7(t)dt and 7(x) are continuous for x> x,.
x

THEOREM 1'. Let f(t), F (1) and y(t) be defined and almost untformly
bounded for t > xy and let N (xz,t) be defined for » >t > x,. Suppose that

xz T T T
1) there exist integrals [ f(s)ds, [v(s)ds, [ N(x,s)ds, [ N(s,t)ds
. [ t t t
and that

[ 17 (@, 8)||N (s, t)"ds < AN (, 2)[°
t
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with some a e {0,1> and some A <1, for ® >t > x,,
2) |N(z, )] <F() (w212 ),

3) lim fF TN (,1)|°dt < o and hmf |N ()| dt +- f ()| dt=pu<1,

T—00 Ty a—00 Ty

4a) lim |f(z)] = M < oo, or

TI—>00

4b) hmf(w)zs (|8] < o0), hmj N(x,t)dt = o and 11mf|N (z,t)|dt=0

I—00 T T—00 I

for fm‘ed 1o >

Then the unique solution §(x), bounded for finite x > »,, of the integral
equation

(3) y(@) =f@)+ [ Koo, )y0)dt (@>a),

where Ky(xz,1) = N(z,t)+y(t), remains bounded for x—>oo. In case 4Db)
il s convergent for x->oo0. If f(x) ts continuous and N (x,1) 48 a continvous
function of the variable x for x >t > xz,, then y(x) ts continuous for x > x,.

Proof. Let
x
Kp(z, t) = f Kyz,s)Kpn_1(s,t)ds for z>t>x, and n=1,2,..
i

Now, we proceed as in the proof of Theorem 1: we define the functions

Rz, ) = 3 K@, 1), J(@) = | R, /(0 and §(x) = @)+ @) tor

x>t > x, and state that 7(x) satisfies (3). Next, we choose a number a
satisfying the inequality max(4, y) < a < 1. Then with some z, > =,
we have

f | Ky(z, t)|dt <a for x>u.
We prove the inequality
|Kn(z, 1)) < a"F ()| N (@, )|" +na"""py(@, 1) +a"[p(?)|
fora>2, x>1>2, and n =0,1, 2, ... where
(@, 1) =F°(1) [ |N(s,0)]p(s)|ds
i

and then we get lim |7(z)] < oo.

00
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In case 4b) it is easy to verify that the function

o) =@ -7, where 8 =3+ [ p@F@de (@>m)

To

satisfies the integral equation

u(@) = h(@)+ [ Nz, )@@ (@ >a),
where '

fulw) = @)+ f«p(tw(t)dt+lﬁa(flv(w,ndt—l).

Since lim f,(z) = 0, we obtain by 1.3 that lim y,(z) =0 and it
>0 Z—»00
follows that lim y(x) = s,. The continuity of 7(x) for z > x, follows as
00

in the proof of Theorem 1.
THEOREM 2. Suppose that

1) the function gP(x) has the property H at the point & = oo with the
constant K (cf. p. 170) uniformly for p €(0,1), g(x) +« 0, |g(x)| is mono-
tone and g'(z) is almost uniformly bounded for x > x,,

2) f(x), ¢(x) and y(x) are bounded and integrable in every finite inler-
val C {z,, oo),

3a) lim |f(«)] = M < oo, or
T—o0

3b) Lim f(2) = s (Is| < oo),

1) [ )t < oo,
5) lim ¢(z) = 0.
Let
g'(t)

K(m,t=m¢(t)+wp(t) for =@y, t>x,.

Then in the case of lim g(x) = 0 the integral equation
T—00
(4) y(@) =@+ [ K@, )yt
T

has for large & (=wx,) ewactly one solution §(x) bounded for x—oo. We have
lim |y(z)| = M in case 3a), resp. lim §(x) = s in case 3b).
T—>00 Z~—00
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In the case of lim |g(z)] = oo the unique solution 7%,(x), bounded for
=0

finite © (=m,), of the integral equation

(5) y(@) =1(@)+ [ K@, )yt)dt (@ >m)
T

(@, = x, 18 chosen so large that Il lw(t)|dt < 1) remains bounded for x —oo.
o

In case 3b) y,(x) i8 convergent as x—oo.

If f(x) ts continuous, then F(x) for large x and ¥ (x) for & > m, are
also continuous.

Proof. In the case of lim g(x) = 0 we choose a fixed ae(0,1) and
T—>00

for given £> 0 a small 6 > 0 such that the inequalities Ké/(1 —a) < 1
and Ké/a < e are true. Next, we choose z, > x, such that [p(z)| <48
holds for # > x, and that

p [ o) lg' (1)l dt < Klg(x)P
x
is satisfied for # > @, and every p € (0, 1>. We obtain by 1) for t > z > =,:

[]
[ 1N (@, )N (s, 1) ds

— g OpOF oo [ p(6)lge) g )lds < B 2 N (@, 01

Then the inequality in hypothesis 1) of Theorem 1 is satisfied with
4 = Kd/(1 —a). Next, we state that hypothesis 2) of Theorem 1 is satis-
fied for

F(l) = gg;qa(t)l for 1>a,.

We shall show that hypothesis 4) of Theorem 1 is also satisfied. We have

o0

sup | F' )N (E, 1)dt =

TosEsa 2 E)I

“Ng'(tp(d)

Kﬁlg(w)|

< for z>uw,.
n<t<e alg(é)[° -

To prove this part of Theorem 2 we now use Theorem 1.
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In the case of lim |g(x)| = oo we choose as above x, > &,. As in
T—>00

the case of lim ¢g(«) = 0, we prove the inequality in hypothesis 1), hypo-

T—>00

thesis 2) and the first hypothesis in 3) of Theorem 1’. Furthermore,
we have

im f K (o, 9)ldt <lim s f|g'(t)¢(t)[dt+xf p(O)ldt = A

IO

and similarly

lim [ K (z,t)dt = 4

T—>00 Y

where 4 = f lp(t)|dt, A, = f p(t)dt. The second hypothesis in 3) and

hypothesis 4b) of Theorem 1' are then satisfied for vy =2, 4 = 4 and
6 = A,. To prove the second part of Theorem 2 we use Theorem 1’'.

2. In this section we shall prove three theorems about asymptotic
properties of integrals of some differential equations of the second order.

2.1. Suppose that in the interval <xy,x), Z < oo there exist A'"'(x),
az(x), ay(x), ao(x) and B'(z), and that A(x) # 0, ax(x) # 0. Moreover sup-
pose that there exists a solution y(x) of the integral equation

y(@) =f(@)+ [ Kz, )y)d@t (2, <z <7),
&

T

frwsoa, ge = e ([ 1), K@,

_g@® ()
g(a) ay(x)

_[al(m)A(w)] + === Go{2) A(x), with & ae{®y,Z>;c and ¢, are constants.
() ax(%)

Then 7(x) satisfies the differential equation

where f(x) =c+ g(m g(a;)

= (1), p(2) = 4 (@) + A @) {9 (@) ;

|41, 9(@) = 47 (@) -

(6) &Y' tay +ay =bx) (BH<x<T),
ax()
A ()

To prove 2.1 we multiply by g(«) the above integral equation and
obtain by differentiation the differential equation of the second order:

rr r r r 7 A
Ay +(14+A" —p+Ap)y +lv—o -+H(4p) ]y =a—26,

where b(x) = B'(x).

in which we substitute the values for ¢(z) and y(x).
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THEOREM 3. Suppose that for z > =,
1) there exist conlinuous A'', a3, ai, ag and b (x > =x,),

2) A #0,a,# 0and [A| < N|re A| with some constant N > 1 (z > =x,);
furthermore we have

® dx
3 J 1@y = >

To

4) lim g(z) =0,

>0
5a) lim [ %b—)mdt=m<oo, or
I—00 Iy 2

5b) | %’dt:a (Is] < o0),

6) [|p(w)|de < oo, where @(x) and y(x) are defined as in 2.1.
ZTo

Then the differential equation (6) for T = co has an integral y(x)

bounded for & —»oo in case ba), and convergemt in case 5b). If in addition
we have

7a) im |4 ()] > 0, lim [yp(x)| < oo,
T—»00

I—00

then in case 5a) we have Iim |7'(x)| < oo; if

Z—r0

7b) lim A(x) =L (0 < |L] < o), lim p(x) =0,
then in case 5b) we have lim %'(z) = 0.
00

Under the hypothesis re A > 0 every integral of (6) and ils derivative
have analogous asymplotic properties as j(x) and y'(x), respectively.

Proof. Let us observe that from 1) and 2) it follows that we always
have re A < 0 or re A > 0 for 2 > z,. In the case of re 4 < 0 we con-
sider the integral equation (4) with f(x) and g(x) defined as in 2.1 for
B(x) = const + [ Ap(Y)
s Gy(1) L
with —¢(x) instead of ¢(x)). We obtain after 1.2 the relation lim [f(2)| < oo

r—00

dt (with some ¢,¢; =0, a =1, §= co and

in case Ha), and using ’Hopital’s rule in the formulation of Theorem C (2)
[1], p. 20, we find that f(x) is convergent in case 5b). Then under our
hypothesis, in virtue of Theorem 2, the integral equation (4) has for
large  a continuous solution 7(z) bounded as x—>co in case Ha), and

(?) In the formulation of this rule the hypothesis of continuity of f'(z) and g’'(x)
must be added.
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convergent in case 5b). Multiplying by g(x) the integral equation (4) we
obtain for large x by differentiation:

M) 7@ = 45 (BO)+P@ 176 + [ v07 0@

It follows that there exist y'(x) and ¥"'(x), and by 2.1 the function
Y(x) satisfies for large x the differential equation (6) with Z = oo.
From (7) follow the asymptotic properties of %'(z) for re A < 0 under
hypothesis 7a) or Tb).

In the case of re A > 0 it is easy to see in virtue of 2.1 that every
integral of the differential equation (6) with Z = co satisfies the integral
equation (5) with f(x) and g(x) defined as in 2.1 for { = @ = #, and for
some ¢ and ¢,. It follows by Theorem 2 that in the case of re 4 > 0
every integral y(z) of (6) (with ¥ = oo) remains bounded as x-»oo0 in
case Ba) and is convergent in case 5b). Under hypothesis 7a) or 7b) we
prove the asymptotic properties of 4'(x) as in the case of re 4 < 0.

COROLLARY 1. Under the hypothesis a,(x) = 1 the assertion of T'heo-
rem 3 18 true if y = A(x) 18 a solution of the adjoint differential equation

¥’ —(,y) +ay =0,
satisfying with a,(z), al(x) and b(x) the hypothesis of Theorem 3.
COROLLARY 2. In the case of A(x) = const, re A % 0 and a,(x) = 1
we obtain the following theorem: If
1) there exist continuous ay(x), as(x) and b(z) for x > x,,

2a) thI fb(t)dtl < oo, oF

T—00 Io
2b) [ b(z)de =s (|s] < o0),
To

3) lim a,(x) = s, (I8)] < o0, TES #0),
T

4) Jeglao(w)—-aq(m)ldm < oo and lim {ay(x)—ai(z)} =0,

=00

then the differential equation
(8) Y’ +a(@)y +agx)y =blx) (2> )

has an integral y(z) such that y(x) and y'(x) remain bounded as = —>oco
in case 2a) and %(x) 18 convergent and lim 7'(z) = 0 in case 2b). Under

the hypothesis res, > 0 every solution of (8) and its derivative have analo-
gous asymptotic properties as y(x) and y'(x).
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In the case of A(x) = a,(x) and a,(x) = 1 we obtain from Theorem 3
the following

THEOREM 4. Suppose that
1) a;’'(x), ao(z) and b(x) are continuous for x = x,,

2a) lim | fb(t)dt|< oo, oF

2b) Tb(m)dw =8 (|8] < o),

3) ay(x) # 0 and |ay(x)] < N|reay(x)| for © > x,,

dw
4) z{ |a% (@) + a(@)|dr < oo andf @
5) lim (a,az +as+agay) = 0.
Then the differential equation
(9) a(#)y" +Y +agw)y =b(w) (2= m,)

has an integral y(x) bounded as x —oo in case 2a) and convergent in case 2b).
If in addition we have

6a) im |ay(2)] > 0 and Lim |a(#) + ag(®)] < oo,

00 I—00
then in case 2a) we have lim |7'(2)] < oo.
=00

If
6b) lim a,(z) =L (0 < |L| < o0) and lim {az(x) +ay(z)} =0,

Ir—00

then in case 2b) we have lim ¥'(x) = 0.

T—00
Under the hypothesis re a,(w) > 0 every integral of (9) and its deri-
vative have analogous asymplotic properties for x—>co as j(x) and y'(x),
respectively.
Let us remark that hypotheses 4) and 5) are fulfilled if

a(@) = 0(x717%),  a;(2) =O0(a'~*), @z(x)=0(x"), a(x)=0(x"'")

as & -—>oo, with some &> 0.

THEOREM 5. Suppose that

1) there exist continuous a;'(x), ao(z) and b(x) for & = w,,
2) ay(z) # 0 and [ay(x)| < N|re ay(z)| for = > x,,

3a) lim | fb (t) (exp fao 8)ds)dt| < oo, or

I—>00 X9
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[e%) t
3b) | b(t) (exp J ay(s)ds) &t = L (|L| < oo),

4) ay(@) = 0(2°), ag(z) = O (2°77), ay(2) = O (2F), az(x) = O (2#~!) and
az(z) = O(2#~%) (w—>o0), for ref <1, re(2a+p) < —1.
Then there exists an integral 3(x) of the differential equation (9) such
T
that the function y(x)exp [ aq(t)dt remains bounded for & —oco in case 3a),
To :
and i8 convergent in case 3b). Under the hypothesis re a,(z) > 0 every
integral of (9) has analogous asymplotic properties for z—>oo0 as y(x).
x
Proof. Substituting into (9) y(x) = 2(») exp(— J ax(t)dt) for = > z,
To

we obtain the differential equation

x
(10)  a2” + (1 —2a,a,)2" + a,(ag—ag)z = b exp fao(t)dt (x = m,) .

Lo

In this case the functions ¢(x) and y(x) (see 2.1) have for A (x)
= ay(x) the following form:

¢ = ai+a(p+2ag), v = ay+2a0az + ay(ac + ag).
We get by 4): lim ¢(2) = 0 and y(x) = O(x~'~¢) for x->o00 with some

T
¢> 0. Using Theorem 3 for 1—2a,a,, a,(as—a) and bexp [ at)dt
To

instead of a;, a, and b we find that there exists a solution z(z) of (10)
bounded for x—>co in case 3a) and convergent in case 3b). Under the
hypothesis re a,(x) > 0 every integral of (10) has analogous asymptotic
properties for x—>oo0 as Z(x).
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